

What are Interoperable

Software Libraries?
Introducing the xSDK

The IDEAS Scientific Software Productivity Project
 ​ideas-productivity.org/resources/howtos/

Background:​ As extreme-scale computational science increasingly incorporates multiscale and
multiphysics modeling, simulation, and analysis, the combined use of software developed by
independent groups has become imperative: no single team has resources for the full range of
capabilities needed for predictive science and decision support. ​Software libraries ​have proven
effective in providing widely reusable software that is robust, efficient, and scalable for
high-performance computing (HPC). Moreover, scientific application codes can employ library
design principles to help manage complexity and achieve good performance, whether the
application software is intended for use in a single context or modest reuse across applications
in the same domain (e.g., as ​domain components​). While the following discussion uses
terminology of software library interoperability, the concepts also apply to application-specific
domain components.

A software library​ is a high-quality, encapsulated, documented, tested, and multiuse software
collection that provides functionality commonly needed by application developers. Key
advantages of software libraries include leverage of library developer expertise and reduced
application coding effort. For example, numerical software libraries provide easy access to
sophisticated mathematical algorithms and high-performance data structures that have been
developed by experts, so that application users do not need to write this complex code and can
instead focus on their scientific domain software.

Libraries can provide control inversion via abstract interfaces, call-backs, or similar techniques
such that user-defined functionality can be invoked by the library, for example, a user-defined
sparse matrix multiplication routine. Libraries can also facilitate construction of related specific
objects that provide customizable behavior to improve performance or flexibility. Moreover,
libraries can include domain-specific software components that are designed to be used by
more than one application.

Software library interoperability ​refers to the ability of two or more libraries to be used
together in an application code, without special effort on the part of the user. For simplicity, we
discuss interoperability between two libraries; extension to interoperability among three or more
libraries is conceptually straightforward. Depending on application needs, various levels of
interoperability can be considered:

● Interoperability level 1: ​both libraries can be used (side by side) in an application
● Interoperability level 2​: the libraries can exchange data (or control data) with each

other
● Interoperability level 3​: each library can call the other library to perform unique

computations

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, Dec 5, 2016

https://ideas-productivity.org/resources/howtos/

The simplest case (interoperability level 1) occurs when an application needs to call two distinct
libraries for different functionalities (for example, an ​MPI​ library for message-passing
communication and ​HDF5​ for data output). As discussed in [​1​, ​2​], even this basic level of
interoperability requires consistency among libraries to be used within the same application, in
terms of compiler, compiler version/options, and other third-party capabilities. If both libraries
have a dependence on a common third party, the libraries must be able to use a single common
instance of it. For example, more than one version of the popular SuperLU linear solver library
exists, and interfaces have evolved. If two libraries both use SuperLU, they must be able to
work with the same version of SuperLU. In practice, installing multiple independently developed
packages together can be a tedious trial-and-error process.

Interoperability level 2 builds on level 1 by enabling conversion, or encapsulation, and exchange
of data between libraries. This level can simplify use of libraries in sequence by an application.
In this case, the libraries themselves are typically used without internal modification to support
the interoperability.

Interoperability level 3 builds on level 2 by supporting the use of one library to provide
functionality on behalf of another library. This level of interoperability provides significant value
to application developers because they can access capabilities of additional libraries through
the familiar interfaces of the first library.

The Extreme-Scale Scientific Software Development Kit (xSDK)

A key aspect of work in the ​IDEAS project​ is development of the
Extreme-scale Scientific Software Development Kit (xSDK)​—a collection
of related and complementary software elements that provide the
building blocks, tools, models, processes, and related artifacts for rapid
and efficient development of high-quality applications.

xSDK community policies: ​The xSDK addresses interoperability among the high-performance
numerical libraries ​hypre​, ​PETSc​, ​SuperLU​, and ​Trilinos​. The xSDK ensures level 1
interoperability for each xSDK library via a full-featured build script and testing environment and
a collection of community policies. The following draft xSDK community policies address
challenges in interoperability level 1.

● xSDK package community policies​: ​A set of required policies​ (including topics of
configuring, installing, testing, use of MPI, portability, contact and version information,
open source licensing, namespacing, and repository access) that a software package
must satisfy in order to be considered ​xSDK compatible​. This designation informs
potential users that the package can be easily used with other xSDK libraries and
components. Also presented are​ ​ recommended policies​ (including topics of public
repository access, error handling, freeing system resources, and library dependencies),
which are encouraged but not required. Similarly, a package can become an ​xSDK
member package​ if (1) it is an xSDK-compatible package, ​and​ (2) it uses or can be
used by another package in the xSDK, and the connecting interface is regularly tested
for regressions.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, Dec 5, 2016

http://www.mpi-forum.org/
https://www.hdfgroup.org/HDF5/
https://figshare.com/articles/Package_Management_Practices_Essential_for_Interoperability_Lessons_Learned_and_Strategies_Developed_for_FASTMath/789055
https://wci.llnl.gov/codes/smartlibs/UCRL-JRNL-208636.pdf
https://ideas-productivity.org/
http://xsdk.info/
https://computation.llnl.gov/project/linear_solvers/
https://www.mcs.anl.gov/petsc/
http://crd.lbl.gov/~xiaoye/SuperLU/
https://trilinos.org/
http://dx.doi.org/10.6084/m9.figshare.4495136

● xSDK community installation policies: GNU Autoconf and CMake options​: ​A

standard subset of configure and CMake options for xSDK and other HPC
packages​ in order to make the configuration and installation as efficient as possible on
standard Linux distributions and Mac OS, as well as on target machines at DOE
computing facilities (​ALCF​, ​NERSC​, and ​OLCF​).

The xSDK collection of software packages commits to adhere to these community policies in
order to ensure compatibility with other packages that meet the same standards. The aim is to
simplify the combined use of multiple independently developed software packages and to
provide a foundation for addressing broader issues in interoperability and performance
portability.

Deeper levels of xSDK interoperability​ involve exchanging, controlling, and interpreting data,
as well as calling routines between libraries (interoperability levels 2 and 3 described above).
Initial xSDK capabilities of hypre, PETSc, SuperLU, and Trilinos support interoperability among
scalable linear solvers, so that applications can readily experiment with algorithms across
multiple packages, in combination. Forthcoming companion documents will explain approaches
used for interfaces and adapters between packages as well as work on interoperability layers
for other functionalities. A longer-term goal is collaboration among members of the HPC
community to improve software interoperability as needed by extreme-scale computational
science.

References:

[​1​] ​Package Management Practices Essential for Interoperability: Lessons Learned and
Strategies Developed for FASTMath, M. C. Miller, L. Diachin, S. Balay, L. C. McInnes, and B.
Smith, First Workshop on Sustainable Software for Science: Practice and Experiences
(WSSSPE), Nov 17, SC13.

[​2​] ​Smart Libraries: Best SQE Practices for Libraries with Emphasis on Scientific Computing, M.
C. Miller, J.F. Reus, R.P. Matzke, Q.A. Koziol, A.P. Cheng, Proceedings of the Nuclear
Explosives Code Developer's Conference, Dec 2004.

This document was prepared by Lois Curfman McInnes, Michael Heroux, Xiaoye Li, Barry Smith, and Ulrike
Yang, with contributions from all xSDK developers.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

Version 0.2, Dec 5, 2016

http://dx.doi.org/10.6084/m9.figshare.4495133
http://www.alcf.anl.gov/
http://www.nersc.gov/
https://www.olcf.ornl.gov/
https://figshare.com/articles/Package_Management_Practices_Essential_for_Interoperability_Lessons_Learned_and_Strategies_Developed_for_FASTMath/789055
https://wci.llnl.gov/codes/smartlibs/UCRL-JRNL-208636.pdf

