Overview: Software Productivity Challenges for Extreme-Scale Science

Lois Curfman McInnes, Mike Heroux, Hans Johansen
In collaboration with IDEAS project members
Outline

- **Confluence of trends: complexity!**
 - Multiphysics and multiscale simulations
 - Emerging extreme-scale architectures

- **Software productivity crisis**
 - Recent DOE activities: SWP for extreme-scale science
 - Related community efforts

- **Introduction to IDEAS project**
 - Interoperable Design of Extreme-scale Application Software
New architectures provide unprecedented opportunities for new science

Multiphysics: greater than 1 component governed by its own principle(s) for evolution or equilibrium
- Also: broad class of coarsely partitioned problems possess similarities to multiphysics problems

“The great frontier of computational physics and engineering is in the challenge posed by high-fidelity simulations of real-world systems … typically characterized by multiple, interacting physical processes (multiphysics), interactions that occur on a wide range of both temporal and spatial scales.”

— *The Opportunities and Challenges of Exascale Computing*, ASCAC

A. Hakim, PPPL
E. Kaxiras, Harvard
E. Myra, Univ. of Michigan
K. Evans, ORNL
Software productivity challenges permeate HPC multiphysics, multiscale applications

IJHPCA, Feb 2013: Special issue

- Fluid-structure interaction
- Fission reactor fuel performance
- Reactor core modeling
- Crack propagation
- Fusion
- Subsurface science, hydrology
- Climate
- Radiation hydrodynamics
- Geodynamics
- Accelerator design

doi:10.1177/1094342012468181
Flexible multiphysics/multiscale software is essential

We must fundamentally rethink approaches to multiphysics models, algorithms, and solvers with attention to data motion, data structure conversion, and overall application design.

Challenges:

- Enabling the introduction of new models, algorithms, and data structures
- Addressing CS issues for coupled codes, e.g.,
 - mapping codes to machine topologies
 - load balancing
 - resilience strategies
- Competing goals of software interface stability and software reuse with the ability to innovate algorithmically and develop new physical models
- Composability, sharing methods and code, common infrastructure

“*The way you get programmer productivity is by eliminating lines of code you have to write.*”

Increasing complexity of extreme-scale architectures

Machine peak flops grow steadily … … but it has not come from clock speed (10+ years ago)

Peak has come from core counts (MPI parallelism) and accelerators (threads) … … and more programming difficulties with distributed memory and communication.

Reference: P. Kogge (Notre Dame), John Shalf (LBNL), preprint
Software engineering and HPC: Efficiency vs. other quality metrics

The table below shows how focusing on the factor below affects the factor to the right:

<table>
<thead>
<tr>
<th>How focusing on the factor below affects the factor to the right</th>
<th>Correctness</th>
<th>Usability</th>
<th>Efficiency</th>
<th>Reliability</th>
<th>Integrity</th>
<th>Adaptability</th>
<th>Accuracy</th>
<th>Robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctness</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Usability</td>
<td></td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>↓</td>
<td></td>
<td></td>
<td>↓</td>
<td>↓</td>
<td>←</td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Reliability</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Integrity</td>
<td></td>
<td></td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptability</td>
<td></td>
<td></td>
<td></td>
<td>↓</td>
<td>↑</td>
<td></td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Accuracy</td>
<td>↑</td>
<td></td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Robustness</td>
<td>↓</td>
<td></td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td></td>
<td>↓</td>
</tr>
</tbody>
</table>

Source: **Code Complete**
Steve McConnell
Confluence of trends

- **Fundamental trends:**
 - Disruptive HW changes: Requires thorough algorithm/code refactoring
 - Demands for coupling: Multiphysics, multiscale

- **Challenges:**
 - Need refactoring: Really, continuous change
 - Modest app development funding: No monolithic apps
 - Requirements are unfolding, evolving, not fully known *a priori*

- **Opportunities:**
 - Better design and SW practices & tools are available
 - Better SW architectures: Toolkits, libraries, frameworks

- **Basic strategy: Focus on productivity**
Recent DOE activities: Exploring crisis in SW productivity for extreme-scale science

- **Pre-history:**
 - DARPA-HPCS, DOE community meetings, SciDAC, SC, ICSE-CSE, etc.
 - Climate and environment NRC reports, FSP planning

- **Summit:**
 - *Extreme-Scale Application Software Productivity*, Feb 2013

- **Whitepaper:**
 - *Extreme-Scale Scientific Application Software Productivity: Harnessing the Full Capability of Extreme-Scale Computing*, Sept 2013

- **Workshop and report:**
 - *Software Productivity for Extreme-Scale Science*, Jan 2014
 - Whitepapers
 - Relevant reading

- **Minisymposium at SIAM PP14:**
 - *Software Productivity for the Next Generation of Scientific Applications* (8 presentations)

Related community efforts

- **WSSSPE: Working towards Sustainable Software for Science**
 - wssspe.researchcomputing.org.uk

- **Software Carpentry**
 - software-carpentry.org

- **CSE15 Minitutorial: Lab Skills for Scientific Computing,** Greg Wilson
 - MT3, MT4: Tues, March 17, 2:15-6:05 pm

- **Software Engineering for Science**
 - www.se4science.org

- **Software Engineering for HPC in CSE (SEHPCCSE)**
- **Software Engineering for CSE (SECSE)**

- **Computational Science Stack Exchange**
Outline

- Confluence of trends: complexity!
 - Multiphysics and multiscale simulations
 - Emerging extreme-scale architectures

- Software productivity crisis
 - Recent DOE activities: SWP for extreme-scale science
 - Related community efforts

- Introduction to IDEAS Project
 - Interoperable Design of Extreme-scale Application Software
Interoperable Design of Extreme-scale Application Software (IDEAS)

Motivation
Enable *increased scientific productivity*, realizing the potential of extreme-scale computing, through a new interdisciplinary and agile approach to the scientific software ecosystem.

Objectives
Address confluence of trends in hardware and increasing demands for predictive multiscale, multiphysics simulations.
Respond to trend of continuous refactoring with efficient agile software engineering methodologies and improved software design.

Impact on Applications & Programs
Terrestrial ecosystem *use cases tie IDEAS to modeling and simulation goals* in two Science Focus Area (SFA) programs and both Next Generation Ecosystem Experiment (NGEE) programs in DOE Biologic and Environmental Research (BER).

Approach
ASCR/Ber partnership ensures delivery of both crosscutting methodologies and metrics with impact on real application and programs.

Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)
- ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)
- BER Lead: David Moulton (LANL)
- Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)

Integration and synergistic advances in three communities deliver scientific productivity; outreach establishes a new holistic perspective for the broader scientific community.

www.ideas-productivity.org
IDEAS: Interoperable Design of Extreme-scale Application Software

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)
BER Lead: J. David Moulton (LANL)

Use Cases for Terrestrial Modeling
Lead: J. David Moulton (LANL)
Tim Scheibe (PNNL)
Carl Steefel (LBL)
Glenn Hammond (SNL)
Reed Maxwell (CSM)
Scott Painter (ORNL)
Ethan Coon (LANL)
Xiaofan Yang (PNNL)

Methodologies for Software Productivity
Lead: Hans Johansen (LBNL)
Roscoe Bartlett (ORNL)
Todd Gamblin* (LLNL)
Christos Kartsaklis (ORNL)
Pat McCormick (LANL)
Sri Hari Krishna Narayanan (ANL)
Andrew Salinger* (SNL)
Jason Sarich (ANL)
Dali Wang (ORNL)
Jim Willenbring (SNL)

Extreme-Scale Scientific Software Development Kit
Lead: Mike Heroux (SNL)
Jed Brown (ANL)
Irina Demeshko (SNL)
Kerstin Kleese-Van Dam (PNNL)
Sherry Li (LBNL)
Vijay Mahadevan (ANL)
Daniel Osei-Kuffour (LLNL)
Barry Smith (ANL)
Ulrike Yang (LLNL)

Outreach and Community
Lead: David Bernholdt (ORNL)
Katie Antypas* (NERSC)
Lisa Childers* (ALCF)
Judy Hill* (OLCF)

Crosscutting Lead: Lois Curfman McInnes (ANL)

SDAs NGEE Exascale Co-Design ASCR Math & CS ALCF
CLM ACME Exascale Roadmap SciDAC NERSC OLCF

BER Terrestrial Programs DOE Extreme-scale Programs DOE Computing Facilities

IDEAS project structure and interactions
Use cases: Multiscale, multiphysics representation of watershed dynamics

- **Use Case 1**: Hydrological and biogeochemical cycling in the Colorado River System
- **Use Case 2**: Thermal hydrology and carbon cycling in tundra at the Barrow Environmental Observatory

- Leverage and complement existing SBR and TES programs:
 - LBNL and PNNL SFAs
 - NGEE Arctic and Tropics

- **General approach**:
 - Leverage existing open source application codes
 - Improve software development practices
 - Targeted refactoring of interfaces, data structures, and key components to facilitate interoperability
 - Modernize management of multiphysics integration and multiscale coupling
IDEAS interconnections

- **Use cases:** Drive efforts. Traceability from all efforts
 - But generalized for future efforts

- **Methodologies ("HowTo") for SWP:**
 - Metrics: Define for all levels of project. Track progress
 - Workflows, lifecycles: Document and formalize. Identify best practices

- **xSDK:** frameworks + components + libraries
 - Build apps by aggregation and composition

- **Outreach:** Foster communication, adoption, interaction

- **First of a kind:** Focus on **software productivity**
xSDK focus

- Common configure and link capabilities
 - Initial emphasis: Chombo, hypre, PETSc, SuperLU, Trilinos
 - Approach:
 - Determine common definition of configure arguments, eliminate namespace collisions
 - Develop approach that can be adapted by any library development team for standardized configure/link process
 - Develop testing capabilities to assure configure/link processes continue to work indefinitely

- Library interoperability
- Designing for performance portability
Agile, iterative, and incremental cycles for extreme-scale science

- Issues for extreme-scale software:
 - software engineering
 - science/library testing
 - refactoring
 - performance portability
Goal: Put steps in place to encourage adoption and reuse of research libraries, and improve longevity of ASCR software investments through refactoring, componentization.
Outreach and community

- Begin changing the way computational and domain science communities think about software development.
- Training: Bringing *practical* information about techniques and tools to software developers, and advice on tailoring.
 - Targeting BER and broader DOE (via SciDAC, INCITE, ALCC, NNSA, ACTT, etc.) with 2 trainings per year.
- Community development: Online tools to facilitate conversation about productivity issues and solutions.
 - Incrementally build and refine community via outreach to different programs, offices.
- Leverage computing facility liaisons, and team’s existing relationships with other programs for Outreach.
Better software productivity is essential for extreme-scale CSE

- **Better SW productivity can give us better, faster and cheaper**
 - **Better**: Science, portability, robustness, composability
 - **Faster**: Execution, development, dissemination
 - **Cheaper**: Fewer staff hours and lines of code

- **IDEAS project**
 - Enabling production of high-quality science results, rapidly and efficiently
 - Multiscale terrestrial ecosystem science
 - Broadly: DOE extreme-scale scientific apps
 - Delivering first-of-a-kind extreme-scale scientific software ecosystem
 - xSDK
 - SWP methodologies (“HowTo”)
 - Outreach and community

Essential mechanism for progress
- In time of disruptive change
- In presence of multiple design tradeoffs
Coming up …

 - David Bernholdt

- **2:20-2:40 Software Productivity Challenges in Environmental Applications**
 - David Moulton

- **2:45-3:05 Software Productivity Community Input: Concerns and Priorities**
 - Jeff Carver and Mike Heroux