
Approved for public release

LLNL-PRES-819903
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

An Overview of the RAJA Portability Suite

Arturo Vargas, Rich Hornung (LLNL)
RAJA/Kokkos Project WBS 2.3.1.18
HPC Best Practices Webinar Series
March 10, 2021

2
LLNL-PRES-819903

The RAJA Portability Suite provides complementary open-source
tools for portable execution and memory management

CHAI: C++ array
abstractions
§ Automates data

copies, giving look and
feel of unified memory

Single-source application

RAJA CHAI Umpire

Diverse hardware ecosystem
camp

RAJA: C++ kernel
execution abstractions
§ Enables apps to target

various programming model
back-ends while maintaining
single-source app code

Umpire: memory API
§ Provides high performance

memory operations, such
as pool allocations. Native
C++, C, Fortran APIs

camp: low-level C++
metaprogramming
facilities
§ Focuses on HPC

compiler compatibility

https://github.com/LLNL/RAJA
https://github.com/LLNL/CHAI
https://github.com/LLNL/Umpire
https://github.com/LLNL/camp

These libraries are used selectively and in various combinations in
production applications today.

3LLNL-PRES-819903

Astra (SNL)
ARM architecture

The RAJA Portability Suite insulates applications from many
complexities of a diverse hardware ecosystem

RAJA / Umpire / CHAI

Aurora (ANL)
Intel Xeon CPUs + Xe GPUs

Frontier (ORNL) &
El Capitan (LLNL)

AMD CPUs + GPUs

Perlmutter (LBL)
AMD Milan CPUs +

NVIDIA Ampere GPUs

ECP ExaSGD
(power grid optimization)

ECP GEOSX
(geomechanics)

ECP SW4
(earthquake modeling)LLNL ECP/ATDM

(high-order ALE hydro)
plus

others…

Sierra (LLNL)
IBM P9 CPUs + NVIDIA Volta GPUs

ECP apps using RAJA
software tools

4LLNL-PRES-819903

Most ASC applications plus others at LLNL also rely on the RAJA
Portability Suite to run on a wide range of platforms

• Integration of these projects into other applications and libraries is ongoing

Major LLNL ASC Program Applications
Ares ALE3D Kull MARBL Ardra Mercury Teton Hydra

Language C++ C++ C++ C++ &
Fortran

C++ C++ Fortran C++/C

CPU / GPU
Execution
Model

RAJA RAJA RAJA RAJA +
MFEM &
OpenMP

RAJA CUDA &
RAJA

OpenMP &
CUDA-C
(poss. RAJA)

Exploring OpenMP,
CUDA, RAJA

Data
Transfer

UM +
Explicit

CHAI UM Explicit CHAI UM Explicit Explicit,
Exploring CHAI

Memory
Allocation

Umpire Umpire Umpire Umpire Umpire Umpire Umpire Explicit,
Exploring Umpire

The LLNL institutional RADIUSS effort promotes and funds
integration of these tools into non-ASC applications.

5LLNL-PRES-819903

RAJA supports a variety of loop patterns and parallel constructs

Simple & complex loop patterns & execution
• Non-perfectly nested loops
• Loop tiling
• Hierarchical parallelism
• Shared and thread local memory

Loop transformations (without changing app code)
• Change loop iteration patterns, permute loop

nest ordering
• Multi-dimensional data views with offsets and

index permutations
• Fine-grained GPU thread-block mapping control
• Hierarchical parallelism, asynchronous executionMultiple execution back-ends

• Sequential
• SIMD (via vector intrinsics, in progress)
• OpenMP (CPU & device offload)
• Intel Threading Building Blocks (partial)
• CUDA
• AMD HIP
• SYCL (in development)

• Portable reductions, scans, atomic operations, sorts…
• GPU kernel fusing (to reduce impact of GPU launch

overhead for small kernels)
• Other work in progress

• API to encapsulate SIMD/vectorization intrinsics
• Dynamic plugins to enable tool integration

6LLNL-PRES-819903

A simple example shows how RAJA abstracts kernel execution

C-style dot product

double dot= 0.0;
for (int i = 0; i < N; ++i)
{

dot += a[i] * b[i];
}

std::cout << “dot = “ << dot;

RAJA-style dot product

using EXEC_POL = ...;
using REDUCE_POL = ...;
RAJA::RangeSegment it_space(0, N);

RAJA::ReduceSum< REDUCE_POL, double > dot(0.0);
RAJA::forall< EXEC_POL >(it_space,

RAJA_LAMBDA (int i)
{

dot += a[i] * b[i];
});

std::cout << “dot = “ << dot.get();

RAJA
Transformation

In the C-style kernel, all aspects of execution are explicit in the source code; e.g.,
sequential execution, iteration ordering, etc.

RAJA allows you to change how a kernel runs without changing the source code.

Definitions like these
typically go in header files

7LLNL-PRES-819903

RAJA kernel execution has four core concepts

using EXEC_POL = ...;
RAJA::RangeSegment it_space(0, N);

RAJA::forall< EXEC_POL >(it_space,
RAJA_LAMBDA (int i)

{
c[i] = a[i] * b[i];

});

1. Loop execution template (e.g., ‘forall’)

2. Loop execution policy type (EXEC_POL)

3. Loop iteration space (e.g., ‘RangeSegment’)

4. Loop body (C++ lambda expression)

LLNL-PRES-819903

We’ll return to RAJA
in a bit after we
introduce Umpire
and CHAI…

9LLNL-PRES-819903

CHAI’s “managed array” abstraction transfers data automatically at
run time as needed to run kernels

chai::ManagedArray<float> a(100);
chai::ManagedArray<const float> b(100);

// ...

RAJA::RangeSegment range(0, 100);

// Run GPU kernel
RAJA::forall<RAJA::cuda_exec>(range,

RAJA_LAMBDA (int i)
{ a[i] += b[i]; });

// Run CPU kernel
RAJA::forall<RAJA::seq_exec>(range,

RAJA_LAMBDA (int i)
{ std::cout << “a[i] = “ << a[i] << “\n”; });

a

b

CPU memory GPU memory

Umpire does
data allocation

and copy

CHAI
manages
caching

a

b

a

b

a

b

a

b

10LLNL-PRES-819903

void overlay(Shape* shape, double* mesh_data) {

chai::managed_ptr< Shape > mgd_shape = shape->makeManaged();

RAJA::forall< cuda_exec > (... {

mgd_shape->processData(mesh_data[i]);

});

mgd_shape.free();

}

CHAI’s “managed pointer” simplifies the use of virtual class
hierarchies across host and device memory spaces

chai::managed_ptr< Shape > Sphere::makeManaged() { ... }

__host__ __device__ Sphere::Sphere(...) { ... }

• managed_ptr will make a copy of your object hierarchy in device memory

• This requires a method to clone objects and host-device annotations on class constructors

This mechanism allows you to use C++ virtual class hierarchy code
on CPUs and GPUs without a major refactor.

11LLNL-PRES-819903

Umpire provides a unified, portable memory management API

• Allocate, deallocate, copy, move, query

• Memory pools
– Much faster allocation & deallocation than

malloc(), cudaMalloc()…

– Easily shared between application components

• Introspection for better decision-making
– Where does data associated with this pointer

live?

– Which allocator was used for this allocation?

– What is the size of this allocation?

– How much memory is being used on this
resource?

libnuma

SICM

CUDA

Umpire API

DDR GDDR

Implementations

Hardware

HIP

HBM

Application

12LLNL-PRES-819903

Umpire interface concepts allow application developers to reason
about memory use

auto& rm = umpire::ResourceManager::getInstance();
auto host = rm.getAllocator(“HOST”);
auto device = rm.getAllocator(“DEVICE”);

auto device_pool =
rm.makeAllocator<DynamicPool>(“MY_POOL”, device);

void* host_data = host.allocate(1024);
void* dev_data = device_pool.allocate(1024);

rm.memset(host_data, 0);
rm.copy(dev_data, host_data);

host.deallocate(host_data);

• A Memory Resource is a kind of memory, with specific
performance and accessibility characteristics

• An Allocation Strategy decouples how and where
allocations are made, allowing complex allocation
mechanisms

o Memory pools, thread-safety layers, specific algorithms
for memory allocation, etc.

• An Allocator is a lightweight interface for making an
allocation and querying it

o One interface for all resources

• An Operation manipulates data in memory through one
interface regardless of resource

o Copy, move, reallocate, memset, etc.

• These concepts are coordinated by a ResourceManager
o Builds allocators based on allocation strategies and

available resources, dispatches operations based on
pointer locations, etc.

13LLNL-PRES-819903

Sharing GPU memory pools among packages in multiphysics
applications enables larger problems to be run

When each package has its own temporary
state, space available for others is limited

When packages share a pool for temporary
state, overall available space is increased

“A” phase

“B” phase

Tim
e Step

GPU memory

A State B State
A

Temp
B

Temp

A State B State
A

Temp
B

Temp

GPU memory

A State B State

Umpire
Pool

A
Temp

A State B State
B

Temp

“A” phase

“B” phase

Tim
e Step

Umpire allocators and pools are easily shared across packages in
an integrated code system.

14LLNL-PRES-819903

Umpire provides a variety of memory management capabilities

Intuitive concepts
• Resources
• Allocators
• Operations

Features useful in HPC applications
• Various pool allocation strategies (fixed size,

dynamic, monotonic, etc.)
• NUMA support
• Memory allocation advice (preferred location,

mostly read, etc.)
• Thread safe allocators
• Memory introspection

Supported memory types
• Host (CPU)
• GPU global, constant, (host) pinned
• Unified memory
• Mmapped file memory
• Support for NVIDIA, AMD, and Intel

GPU devices available in recent
releases

• Native interfaces for C++, C, and Fortran
• Logging, backtrace, and “replay” capabilities. These

are really useful for investigating application
performance, finding bugs, etc.

LLNL-PRES-819903

Returning to RAJA, we’ll
introduce two APIs for
nested/complex loop
kernels

16LLNL-PRES-819903

We will use a matrix multiplication kernel to explore some RAJA
features and usage

C = A * B, where A, B, C are N x N matrices

C-style
nested

for-loops

for (int row = 0; row < N; ++row) {

for (int col = 0; col < N; ++col) {

double dot = 0.0;

for (int k = 0; k < N; ++k) {

dot += A[k + N*row] * B[col + N*k];

}
C[col + N*row] = dot;

}

}

17LLNL-PRES-819903

Nesting RAJA “forall” statements is not a good approach
because loops are treated as independent entities

• Parallelize row loop?
• Each thread runs all

code in column loop
sequentially

• Parallelize column loop?
• Launch new parallel

computation for each
row à unwanted
synchronization

• Loop interchange and other
transformations require
source code changes à
breaks RAJA encapsulation!

Full parallelization of kernel is hard with nested RAJA foralls –
we don’t recommend it.

forall< exec_policy_row >(row_range, [=](int row) {

forall< exec_policy_col >(col_range, [=](int col) {

double dot = 0.0;

for (int k = 0; k < N; ++k) {

dot += A(row, k) * B(k, col);

}

C(row, col) = dot;

});

});

Note: RAJA Views simplify
multi-dimensional indexing.

18LLNL-PRES-819903

using namespace RAJA;
using KERNEL_POL = KernelPolicy<

statement::For<1, row_policy,
statement::For<0, col_policy,
statement::Lambda<0>

>
>

>;

kernel< KERNEL_POL >(make_tuple(col_range, row_range),
[=](int col, int row) {

double dot = 0.0;
for (int k = 0; k < N; ++k) {
dot += A(row, k) * B(k, col);

}
C(row, col) = dot;

});

The RAJA kernel API is designed to compose and transform
complex parallel kernels, without changing kernel source code

Kernel implementation
(application source code)

Kernel execution policy
(typically lives in a

header file)

19LLNL-PRES-819903

for(int row = 0; row < N; ++row) {
for(int col = 0; col< N; ++col) {

// row-column dot product

}
}

Each loop level has an execution policy and iteration space

Integer parameter in each ‘For’ statement indicates
the iteration space tuple item it applies to.

using EXEC_POL = KernelPolicy<
statement::For<1, row_policy,

statement::For<0, col_policy,
statement::Lambda<0>

>
>

>;

kernel< EXEC_POL >(
make_tuple(col_range, row_range),
[=] (int col, int row) {

// row-column dot product

});

20LLNL-PRES-819903

using EXEC_POL = KernelPolicy<
statement::For<1, row_policy,

statement::For<0, col_policy,
...

>;

using EXEC_POL = KernelPolicy<
statement::For<0, col_policy,

statement::For<1, row_policy,
...

>;

Kernel transformations are made by altering the execution
policy, not the algorithm source code

Outer row loop (1),
inner col loop (0)

Outer col loop (0),
inner row loop (1)

Reordering ‘For’ statements
changes the loop nest ordering

This is analogous to swapping for-loops in the C-style version.

21LLNL-PRES-819903

using EXEC_POL = KernelPolicy<
statement::For<1, row_policy,

statement::For<0, col_policy,

statement::Lambda<0>

>
>

>;

kernel< EXEC_POL >(
make_tuple(col_range, row_range),
[=] (int col, int row) {

double dot = 0.0;
for (int k=0; k < N; ++k) {

dot += A(row, k)* B(k, col);
}
C(row, col) = dot;

});

for(int row = 0; row < N; ++row) {
for(int col = 0; col< N; ++col) {

double dot = 0.0;
for (int k=0; k < N; ++k) {

dot += A(row, k)* B(k, col);
}
C(row, col) = dot;

}
}

Lambda statements invoke lambda expressions (loop bodies)

22
LLNL-PRES-819903

• Tiling statements to partition loops into tiles
• Helps ensure data stays in fast memory while it is used (cache or GPU shared memory)

• Portable kernel local memory (CUDA shared memory or stack memory on a CPU)
• Improved latency for data access, usually compliments tiling policies

• Loop interchange via execution policy change
• Simplifies exploring different data access patterns for different platforms

• Loop Fission/Fusion
• Breaking loops into multiple parts or merging loops

• A variety of execution policies to map loop iterates to GPU blocks & threads in different ways

The RAJA kernel API offers numerous options to explore execution
alternatives and optimization strategies

23LLNL-PRES-819903

using RAJA::expt;

launch< launch_policy >(ExecPlace,
Resources(Teams(NTeams), Threads(NThreads)))
[=] RAJA_HOST_DEVICE (LaunchContext ctx) {

loop< row_policy >(ctx, row_range, [&] (int row) {
loop< col_policy >(ctx, col_range, [&] (int col) {

double dot = 0.0;
for(int k=0; k < N; ++k) {
dot += A(row, k)* B(k, col)

}

C(row, col) = dot;
});

});

});

§ Launch method
Sets up a kernel execution space
for host or device. Run-time
selected by ExecPlace value

§ Launch Context
Control flow within a kernel; e.g.,
thread synchronization

§ Capture types

— Launch lambda captured by
value [=] to make device
copies of captured variables

— Loop lambdas captured by
reference [&] to enable
referencing within loop
hierarchies.

RAJA also provides a launch API which creates a space for writing
portable kernels using RAJA loop methods

Experimental
Release

Kernel execution
space

24LLNL-PRES-819903

launch< launch_policy >(host_or_device,
Resources(Teams(NTeams), Threads(NThreads))) [=]
RAJA_HOST_DEVICE(LaunchContext ctx) {

loop<row_policy>(ctx, row_range, [&](int row) {
loop<col_policy>(ctx, col_range, [&](int col) {

double dot = 0.0;
for(int k=0; k < N; ++k) {

dot += A(row, k)* B(k, col);
}
C(row, col) = dot;

});
});

});

The RAJA launch API differs from kernel by encapsulating the loop
hierarchy inside an execution space

for(int row=0; row < N; +row) {
for(int col=0; col< N; ++col) {

double dot = 0.0;
for(int k=0; k < N; ++k) {

dot += A(row, k)* B(k, col);
}
C(row, col) = dot;

}
}

25LLNL-PRES-819903

launch<launch_policy>(host_or_device,
Resources(Teams(3), Threads(3)))

[=] RAJA_HOST_DEVICE (LaunchContext ctx) {

loop<row_policy>(ctx, row_range, [&](int row) {
loop<col_policy>(ctx, col_range, [&](int col) {

// row-column dot product
});

});

});

RAJA launch GPU execution uses a thread team model same as
the CUDA/HIP block-thread model

Loops can be mapped to CUDA/HIP
blocks and threads

RAJA Teams = HIP/CUDA Blocks
RAJA Threads = HIP/CUDA Threads

Thr 0 Thr 1 Thr 2

TeamIdx (0)

Thr 0 Thr 1 Thr 2

TeamIdx (1)

Thr 0 Thr 1 Thr 2

TeamIdx (2)

26LLNL-PRES-819903

launch< launch_policy >(host_or_device,

Resources(Teams(NTeams), Threads(NThreads)))

[=] RAJA_HOST_DEVICE (LaunchContext ctx) {

loop<row_policy>(ctx, row_range, [&](int row){

loop<col_policy>(ctx, row_range, [&](int col){

// row-column dot product

});

});

}
);

Launch and loop methods are templates on both host and device
policies for run-time selection of execution back-end
using launch_policy =
LaunchPolicy<host_launch_t,

device_launch_t>

using row_policy =
LoopPolicy<host_policy,

device_policy>;

using col_policy =
LoopPolicy<host_policy,

device_policy>;

• Host backends supported
• Sequential/SIMD
• OpenMP

• Device backends supported
• CUDA
• HIP

27LLNL-PRES-819903

int row = blockIdx.x;

int col = threadIdx.x;

for(col; col<N; col += blockDim.x) {

// row-column dot product

}

using row_policy =
LoopPolicy< loop_exec, cuda_block_x_direct >;

using col_policy =
LoopPolicy< loop_exec, cuda_thread_x_loop >;

. . .

loop<row_policy>(ctx, row_range, [&](int row){
loop<col_policy>(ctx, col_range, [&](int col){

// row-column dot product

});
});

RAJA provides policies for common GPU thread striding patterns,
such as CUDA block-stride loops

• Runtime for N = 1e4 on NVIDIA V100: 3793 milliseconds • Runtime for N = 1e4 on NVIDIA V100: 2921 milliseconds

Matrix-Matrix multiplication kernel

28LLNL-PRES-819903

Global thread ID calculations are simplified with RAJA

using row_policy =
LoopPolicy<loop_exec, cuda_global_thread_y >;

using col_policy =
LoopPolicy<loop_exec, cuda_global_thread_x >;

. . .

loop<row_policy>(ctx, row_range, [&](int row) {
loop<col_policy>(ctx, col_range, [&](int col){

// row-column dot product
});

});

int row =
blockIdx.y * blockDim.y + threadIdx.y;

int col =
blockIdx.x * blockDim.x + threadIdx.x;

if(row < N && col < N){
// row-column dot product

}

}

• Runtime for N = 1e4 on NVIDA V100 : 1297 milliseconds • Runtime for N = 1e4 on NVIDIA V100 : 1313 milliseconds
(within 2%)

Matrix-Matrix multiplication kernel with global threads

Bounds checks are not needed
with RAJA since loop methods
mask out-of-bounds indices.

29LLNL-PRES-819903

The RAJA launch API provides portable support for device shared
memory or host stack memory
int by = blockIdx.y;
int bx = blockIdx.x;

. . .

__shared__ double Cs[BLK_SZ][BLK_SZ];

Cs[threadIdx.y][threadIdx.x] = 0;

// Load data tiles into shared memory

for(int k=0; k < (BLK_SZ+N-1)/BLK_SZ; ++k) {

// Tiled matrix-multiply with shared memory
// Cs[r][s] +=

__syncthreads();
}

// Write out to global memory

loop<block_y_pol>(ctx, block_y_range, [&](int by) {
loop<block_x_pol>(ctx, block_x_range, [&](int bx) {

. . .

RAJA_TEAM_SHARED double Cs[BLK_SZ][BLK_SZ];

loop<thread_y_pol>(ctx, ty_range, [&](int ty) {
loop<thread_x_pol>(ctx, tx_range, [&](int tx) {

Cs[ty][tx] = 0.0;
});

});

// Load data tiles into shared memory

for(int k=0; k < (BLK_SZ+N-1)/BLK_SZ; ++k) {
// Tiled matrix-multiply with shared memory
// Cs[r][s] +=
ctx.teamSync();

}
// Write out to global memory
});

});
• Runtime for N = 1e4 on NVIDIA V100 : 980 milliseconds

• Runtime for N = 1e4 on NVIDIA V100 : 1026 milliseconds
(within 5%)

LLNL-PRES-819903

More than a basic loop
abstraction layer, RAJA
provides other mechanisms
to improve application
performance

31LLNL-PRES-819903

RAJA asynchronous execution integrates with CHAI and Umpire

chai::ManagedArray<double> a1(N);
chai::ManagedArray<double> a2(N);

RAJA::resource::Cuda cuda1;
RAJA::resource::Cuda cuda2;

auto event1 = forall<cuda_exec_async>(&cuda1, RangeSegment(0, N),
[=] RAJA_DEVICE (int i) { a1[i] = ... });

auto event2 = forall<cuda_exec_async>(&cuda2, RangeSegment(0, N),
[=] RAJA_DEVICE (int i) { a2[i] = ... });

cuda1.wait_on(&event2);

forall<cuda_exec_async>(&cuda1, RangeSegment(0, N),
[=] RAJA_DEVICE (int i) { a1[i] *= a2[i]; });

forall<seq_exec>(RangeSegment(0, N),
[=] (int i) { printf(“a1[%d] = %f \n”, i, a1[i]); });

Resources assigned to different
CUDA streams passed to RAJA

execution methods

Query or wait on events to
control synchronization

32LLNL-PRES-819903

Fusing small GPU kernels into one kernel launch helps alleviate
negative impact of launch overhead

Packing/unpacking halo (ghost) data on a GPU into MPI buffers is a key application use case

Field arrays with halo data MPI buffer Field arrays with halo data MPI buffer

kernels

threads
threads

Multiple data
copies performed

in one kernel

Fuse kernels

One kernel launched per buffer packing operation One kernel launched for all packing operations

33LLNL-PRES-819903

The RAJA API for fusing kernels into one launch is simple to use
Typical pattern launching many packing
kernels
for (neighbor : neighbors) {

double* buf = buffers[neighbor];
for (f : fields[neighbor]) {

int len = f.ghostLen();
double* ghost_data = f.ghostData();
forall(Range(0, len), [=](int i){

buf[i] = ghost_data[i];
});
buf += len;

}
send(neighbor);

}

This technique is used in production apps at
LLNL and yields 5-15% overall runtime

reduction in typical problems.

Fusing the kernels into one GPU launch
RAJA::WorkPool< ... > fuser;
for (neighbor : neighbors) {

double* buf = buffers[neighbor];
for (f : fields[neighbor]) {

int len = f.ghostLen();
double* ghost_data = f.ghostData();
fuser.enqueue(Range(0, len), [=](int i){

buf[i] = ghost_data[i];
});
buf += len;

}
}
auto workgroup = fuser.instantiate();
workgroup.run();
for (neighbor : neighbors) {

send(neighbor);
}

34
LLNL-PRES-819903

The RAJA Performance Suite is a useful co-design tool to assess
compiler performance and to collaborate with vendors

RAJA performance is within 10% of baseline for almost all Suite kernels.

35
LLNL-PRES-819903

RAJA “Teams” (described earlier) was co-developed with the LLNL
ATDM application (MARBL) team

Hierarchical parallelism & shared memory are key performance
enablers.

MFEM-CUDA MFEM-RAJATeams-CUDA

RAJA performance
on par with MFEM

native CUDA
implementation

36
LLNL-PRES-819903

• LLNL ATDM application (high-order ALE hydro simulations) : uses RAJA, Umpire

ECP applications are showing impressive performance on pre-
exascale platforms

– Node-to-node speedup:
• 15x : Sierra (2 P9 + 4 V100) vs. CTS-1 Intel Cascade Lake

(48 core CPUs)
• 30x : Sierra vs. Astra (Cavium ThunderX2 28 core CPUs)

– Programmatically-relevant simulations scaled to 50% of Sierra
(2048 nodes) and 100% of Astra (SNL) (2048 nodes)

• Documented in ATDM Tri-lab Level 1 milestone report (Dec. 2020)
– Relies heavily on MFEM library (CEED co-design)

• Provides RAJA and Umpire execution and memory back-end options

– RAJA “Teams” capability (discussed earlier) resulted from
collaboration between RAJA and LLNL ATDM application team

37
LLNL-PRES-819903

• SW4 application (high-resolution earthquake simulations) : uses RAJA, Umpire

ECP applications are showing impressive performance on pre-
exascale platforms

– Node-to-node speedup:
• 16x : Sierra vs. CTS-1 Intel Cascade Lake
• 32x : Sierra vs. CTS-1 Intel Broadwell

– Recent paper in Bulletin of Seismological Society of America
presents highest resolution earthquake simulation studies to
date enabled by SW4-RAJA application

– Partial application running on AMD MI-60 GPUs – additional
support in HIP compiler needed

– SW4-lite proxy app running on Intel GPUs (GEN9) – additional
support in DPC++ compiler needed for full SW4

38
LLNL-PRES-819903

ECP applications are showing impressive performance on pre-
exascale platforms

• GEOSX application (subsurface solid mechanics simulations) : uses RAJA, Umpire, CHAI

– Node-to-node speedup
• 14x : Lassen (Sierra arch) vs. CTS-1 Intel Cascade Lake

– Initial studies show good weak scaling up to 64 nodes on Lassen (256
V100s)

– Team is working on scaling to 1000s of GPUs on Summit

39
LLNL-PRES-819903

ECP applications are showing impressive performance on pre-
exascale platforms

• ExaSGD application (power grid optimization): uses RAJA, Umpire
– Adopted RAJA & Umpire ~8 months ago
– Key kernels using RAJA are running at near peak memory BW

on Summit with little system-specific tuning

– Parts of code running on Tulip (Frontier EA system) with good
performance

LLNL-PRES-819903

Our application porting perspectives
are based on production experiences
and constraints:

• Large integrated code bases
• Codes must run well on a diversity of

platforms always
• Codes live for decades so must be

viable across multiple platform
generations

• Under continual development, while
continuously in production use

41
LLNL-PRES-819903

• Insulates applications from technology disruption
– Does not inhibit using new or platform-specific tools

• Insulates apps from variability in programming models and architectures

• Facilitates application flexibility by promoting clean encapsulation

• RAJA-app codesign has led to desirable outcomes
– Easy to leverage features and/or optimizations developed for another application
– Easy to grasp for all application developers
– Easy to integrate with existing applications
– Easy to adopt incrementally

Experience shows that the RAJA Portability Suite enables a diverse
set of portable, high performance applications

42
LLNL-PRES-819903

Porting an application isn’t free – it requires a good plan

• Develop a plan that is agreeable to all developers on the team – implementation and ownership
– Meaning of manageable portability (tolerance for disruption) depends on size and complexity of application
– A memory management strategy is as important as a strategy to manage execution
– Plan for iterative, incremental development à modify code, evaluate performance & cost of change, etc. à repeat…

• Assess algorithm structures and data access patterns
– Think about commonality across algorithms and loop patterns – focus on individual kernels only when necessary
– Keep code and data access simple in kernels – C++ STL containers are not amenable to GPUs
– Look for opportunities for changes that will yield benefits, and which are manageable and maintainable

• Strive to maintain a familiar look and feel of the code
– Consider a code-specific wrapper layer (using templates, macros, etc.)

• How much of an abstraction layer, such as RAJA, do you want to expose in the application code?
• How do you sustain SME developer productivity and enable platform-specific optimizations?
• Add instrumentation for performance analysis

– Convert kernels to use new parallel patterns (e.g., scans) only when needed for desirable performance

43
LLNL-PRES-819903

Establishing performance expectations is critical

• Performance expectations should be based on analysis before you start porting
– What are performance limitations in current code? – memory B/W? compute bound? …
– For example, if application is B/W bound, set expectations by comparing effective node B/W between architectures

• First port code, then analyze performance, then optimize as needed

• Continuously monitor performance while making code changes
– Best done as part of CI process to track on a per commit basis
– Performance should not degrade on current platforms and should improve over time on new systems
– Keep data resident on devices (GPUs) – avoid host-device transfers as much as possible

• Focus optimization effort on performance critical code sections
– Expose as much fine-grained parallelism as is reasonable – how much code disruption can the team tolerate?
– Start with 1 MPI rank per GPU – explore more complex approaches later if there is potential benefit

• Don’t get frustrated when initial results are not what’s expected. It’s an iterative process!
– Production ASC apps at LLNL have been working at porting to GPUs for 5+ years – much progress has been made, but

much work remains….

44
LLNL-PRES-819903

Typically, each optimization step improves performance and reveals
the next problem to solve

• Kernel launch overhead: try to hide with asynchronous kernel launches
• Data transfer between memory spaces: avoid or overlap with other work
• Memory allocation on GPUs is much more expensive than CPUs: memory pools are a must!

GPUs have performance overheads not seen on CPUs

• Libraries have different porting strategies/timelines: Un-ported parts lead to costly
CPU/GPU data transfers

• GPU memory is a scarce shared resource: sharing memory pools can help

Optimization requires coordinating many parts

45LLNL-PRES-819903

The RAJA Portability Suite is on track to be ready for the next
generation of platforms, including exascale

• Our open-source efforts have seen significant contributions from
code teams, vendors, and other external collaborators

– 38+ RAJA contributors, core project team has 8 people
• Up from 20 contributors last year

– Leveraging vendor interactions to support new hardware (IBM, NVIDIA,
AMD, Intel, Cray)

• Tutorials at ECP meetings, ATPESC, and academic conferences

Project Unique Monthly
Visitors

RAJA 234

CHAI 48

Umpire 102

Machine RAJA CHAI Umpire

Perlmutter CUDA support actively used in production on Sierra
We continue to investigate and improve performance

Frontier & El
Capitan

HIP support available in RAJA v0.11.0 (1/2020)
Developed with AMD

Avail. CHAI v1.2.0 (8/2019)
Developed w/ AMD

Avail. Umpire v1.0.0 (8/2019)
Developed w/ AMD

Aurora SYCL back-end development is a collaboration with ANL supported by ECP
Currently, filling feature gaps and improving performance w/ Intel

Avail. Umpire v4.0.0 (9/2020)
Developed w/ ANL

The RAJA Portability Suite is core to the LLNL ASC application GPU
porting strategy. It will be supported beyond ECP.

46
LLNL-PRES-819903

• It depends. What does “performance portability” means for your project?
– If you can afford to develop and maintain platform-specific code, you may prefer that option and may not need a

portability abstraction
– If your application is large or if programming model, hardware architecture, and optimization expertise is sparse on

your team, a portability solution can provide your team with a variety of benefits

• Portability solutions enable you to write single-source code that runs on a diversity of platforms
– You may still need to write some platform-specific code to better optimize some kernels
– Fortunately, a general abstraction approach may be good enough for most of your code

• Benefits of a portability solution include the following:
– (Most of) the cost of developing and maintaining platform-specific code is eliminated
– It’s straightforward to get running on new hardware architectures
– It’s easier to separate software development concerns on your project – optimization work can be done by experts

under the abstraction layer, while application code looks familiar to SME application developers
– You will leverage the expertise and effort of others who contribute to the portability library (features and optimizations);

improving your code performance can be as simple as using an new version of a library

Why use portability solutions like RAJA, Umpire, CHAI, etc?

47
LLNL-PRES-819903

User documentation, tutorials, and other code repos associated
with the RAJA Portability Suite are available

• RAJA User Guide: getting started info, details
about features & usage, tutorial materials
(readthedocs.org/projects/raja)

• RAJA Project Template: shows how to use RAJA
in an app using CMake or make
(github.com/LLNL/RAJA-project-template)

• RAJA Performance Suite: collection of kernels to
assess compilers & RAJA performance. Used by
us, vendors, for DOE platform procurements, etc.
(github.com/LLNL/RAJAPerf)

• RAJA Proxy Apps: proxy apps using RAJA,
CHAI, Umpire (github.com/LLNL/RAJAProxies)

• Umpire User Guide: getting started info, details
about features & usage, tutorial materials
(readthedocs.org/projects/umpire)

• Umpire Interactive Tutorial: interactive user
tutorial using Jupyter notebooks
(github.com/LLNL/umpire-interactive-tutorial)

• CARE: Collection of CHAI And RAJA Externsions
that are useful to application developers to help
write portable code
(github.com/LLNL/CARE)

For RAJA questions and support, please email us: raja-dev@llnl.gov

The RAJA Performance Suite and Proxy Apps are
good sources of examples for RAJA usage.

48LLNL-PRES-819903

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

