

Good Practices for Research Software Documentation
(the slides are available under “Presentation Materials” in the above URL)
Date: February 10, 2021
Presented by: Stephan Druskat (German Aerospace Center (DLR)) and Sorrel Harriet (Leeds
Trinity University)

Q. Can you detail some impact metrics you touched upon as it relates to funding?
Documentation websites publish the number of downloads, number of unique IP addresses per
month, or rank among packages in an ecosystem to indicate their popularity.
What are the (1) ideal and (2) current practises for evaluating the impact of research software
packages? Often a proxy for software impact is finding a paper that accompanies the software
and then using their metrics, citations, or impact. How does one minimize bias in evaluating
research software popularity for funders?

A. Ideally, document how people can cite your software (this can be included in the README,
for example, or in a citation file in the Citation File Format). Daniel Katz discusses software
citation principles in a previous webinar in this series (17, 2018). The publisher usually counts
your citation references. Write about how your software has been used. GitHub metrics such as
stars, downloads, forks etc. should be taken with a pinch of salt: not only can they mean
different things to different people, but they can also be obtained fraudulently (this thread on
Stack Exchange is quite insightful - notice that ‘quality of the documentation’ is mentioned as a
more reliable indicator of sustained popularity.) Might have to show your software has been
cited as software and not as the scientific paper.

Q. Would you version your documentation like you version code?

A. Depending on the type of documentation and the tools you are using, it may naturally be
under version control alongside your code (for example, if you are using an ‘in code’
documentation framework such as Doxygen/JavaDoc, you would be able to recreate earlier
versions of the documentation from earlier revisions of the source code).
You can also keep user guides and developer/maintenance documentation in the same version
control system if it is useful for users and developers. This way, you cannot only recreate earlier
versions of the documentation when you retrieve an earlier revision of the code, it may also
make it easier to ship documentation with your software.
Alternatively, in the case of user guides and installation guides you can have your
documentation under a separate system of version control. You will then need a system for
synchronising your documentation and software version numbers.
There are lots of different tools available for creating and managing software documentation
(e.g. Read the Docs, GitHub pages, etc.) Whatever tools you choose, the most important thing
is to make sure your documentation is well organised so that people can find and update it
when they need to.

https://www.exascaleproject.org/event/softwaredocumentation/
https://citation-file-format.github.io/
https://ideas-productivity.org/events/hpc-best-practices-webinars/#webinar017
https://opensource.stackexchange.com/questions/5110/github-stars-is-a-very-useful-metric-but-for-what
https://opensource.stackexchange.com/questions/5110/github-stars-is-a-very-useful-metric-but-for-what
https://readthedocs.org/

Q. How to get others on your team to prioritize documentation?

A. I believe that decisions about documentation need to be taken collectively, as it is important
that the approach is consistent. I would suggest that documentation needs to be discussed early
on in the project process and ‘budgeted for’, but if it is something you are trying to do
retrospectively, maybe the first thing to do is initiate a discussion with your team about why you
feel it is important. You could highlight some of the benefits of well documented software for
them and for their research. If you sense reluctance or there is a lack of time, agree some
achievable documentation goals with your team.

Q. There could be two types of documentation for a research project. One could be for the
software itself (if it's complicated) and one for using it and more research-oriented. How to
address both in a project effectively?

A. There isn’t a straightforward answer to this...it depends on the situation. For documenting the
software itself, you can start with the basics (i.e. README file, self-documenting code.) For
more complex software, you could use an ‘in code’ documentation generator such as Doxygen
or JavaDoc (there are various tools available for whatever language you’re using.) For other
types of documentation (user guides, installation guides, project documentation etc.) you really
need to consider the intended audience and purpose of the documentation. I would tend to treat
these as 2 separate things. Again, there are many different tools you can use to create and
manage user documentation. Often it comes down to personal preference. For example, do you
and your collaborators prefer markdown or Latex? Does your team use SVN or git? etc.

Q. A lot of these points about documentation also apply to testing (e.g. it becomes part of the
code). In my experience, it is hard enough for most people to write tests when writing software.
Is there a risk of putting too much burden on developers not trained in software engineering, like
domain researchers?

A. The short answer is yes, I do believe it is possible to over-burden inexperienced developers
and I have even experienced this myself. For example, Test Driven Development (TDD) has
many great benefits but it is hard for inexperienced developers to practice consistently without
support. The same could be said of more advanced documentation tools. I think you need to
make the decisions that are right for your team, taking into account the complexity of the
software you are writing, the relative experience-levels of developers in your team, project
requirements, time and budget etc. You may need to start with more modest ambitions in order
for them to be applied consistently. If more advanced approaches are deemed important,
consider how you will support less experienced developers. For example, could you encourage
frequent paired programming within the team?

Q. Some projects use the network to relay usage metrics: how reasonable is this and what
metrics are respectful of privacy?

A. I’m not entirely sure what the question is asking or how it relates to documentation. If the
question is about usage metrics that are relayed back to the service provider (for example, error
logging etc.), I think you probably need to find out what information is collected/not collected by
the service provider. It should be possible to find this out. I would expect, in most cases, that the
metrics they collect are respectful of privacy, but if you are at all concerned it would seem
prudent to check. Unless there is a genuine cause for concern, I would probably not recommend
disabling these features as they serve a legitimate purpose, i.e., usage metrics can be very
valuable to developers to pivot future developments in the direction of actual usage.

Q. When it comes to complex modular software, the hierarchical documentation system helps.
Any recommendation on hierarchical documentation best practices?

A. I’m not sure what exactly “hierarchical documentation system” refers to here. In cases where
documentation needs to follow ISO 9001, teams should be embedded in an institution which
also employs experts on these standards, or has dedicated QA personnel. If it means to refer to
documentation produced in a standardized software engineering process (e.g. as outlined in
SWEBOK), again there should be professional software engineers available to teams working
with such a process, who should guide developers through it. I believe that in practice, few
research software projects have large enough team structures to follow these procedures (or
even some agile procedures which work with a large number of roles). In any case, complex
modular software should (and will usually) be developed together with software engineering
professionals or Research Software Engineers.

Q. What do you suggest to measure software impact with respect to the actual *usage* of your
software?

A. If it’s research software, citations are the only “hard currency” impact metric (I know of) which
shows that software has actually had impact (on research). Practice is still suboptimal, but
picking up (see also FORCE11 Software Citation Implementation Working Group, and the
Software Citation Principles paper).

Q. Documentation is a bit like writing. Sometimes when you change one thing in one place, you
might need to read the whole thing to see if the change affects something else because
somewhere else might refer to the one thing that you change. Is it possible to make
documentation modular so that the ripple effect does not cause us a huge amount of work to
maintain?

A. There are many documentation frameworks which can help with this. You may wish to
investigate documentation tooling for whatever language you are working in. On a more abstract
level, try and follow the DRY principle (“Don’t Repeat Yourself”) in documentation as well. In
short: don’t spread descriptions across, e.g., the README and the user guide (Instead, link
from one to the other). For example, there should be exactly one place where usage of a feature

https://www.force11.org/group/software-citation-implementation-working-group
https://peerj.com/articles/cs-86/

is described for users, and exactly one place which explains how new modules can be
developed to work with existing modules, etc.

Q. How do I write documentation so I don't need to change it too often?

A. Think about the requirements/needs of the documentation and where in the software
development life-cycle you are doing it. For example, it may not be necessary to document in a
lot of detail early on in a project. Using a framework may also help keep your documentation
modular and easier to maintain. Another way to reduce effort is to collaborate with others.
Documentation tooling can also make it easier for others to contribute to your documentation. If
time is lacking, you might also consider a ‘You Ain’t Gonna Need It’ approach, by waiting for
users or contributors to raise issues before addressing them through your documentation.
Another very different way of doing this is to follow a “tutorial-driven development” process,
where only what’s documented (in a tutorial for users) gets implemented.

https://chryswoods.github.io/blog/return_of_the_king/#tutorial-driven-development

