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Many components may be under research
Software continuously evolves
All use cases are different and unique
The US Exascale Computing Project (ECP) is at the 

forefront of these challenges
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The ECP Performance Portability Series

• Motivation for the series
– Platforms differ

• What works well on one platform may not work equally well on others
• ECP community has experiences in a variety of approaches; there is acquired wisdom

– This wisdom should be shared as widely as possible
– Need was felt for in-depth discussions

• We had been considering focused in-person workshops
• Panel series became the best available alternative during time of social distancing

• Outcomes
– Share lessons learned, identify gaps, discover opportunities for partnerships
– Some basic design principles for performance portability also emerged

The objective of ECP is to have participating applications and software technologies 
needed for their science be ready for the exascale platforms

For details about ECP please visit www.exascaleproject.org

For more information about the panel series please view
https://doi.org/10.6084/m9.figshare.13283714.v1
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General Design Principles for HPC Scientific Software

Considerations

 Multidisciplinary teams
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others 

Design Implications

 Separation of Concerns
 Shield developers from unnecessary 

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities
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General Design Principles for HPC Scientific Software

Design first, then apply programming model to the design instead of 
taking a programming model and fitting  your design to it.
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Example: Multiphysics PDEs for Distributed Memory Parallelism
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interfaces

Example: Multiphysics PDEs for Distributed Memory Parallelism

Implemented by 
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and applied 
mathematicians
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software and 
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Example: Design for Extensibility from FLASH
Assumed that capabilities will be added 
for better models
• Assembly from components
• Decentralized maintenance of metadata
• Python tool to parse and configure
• OOP implemented through Unix directory 

structure and configuration tool
Key idea is distributed intelligence

REQUIRES Driver
DEFAULT unsplit
EXCLUSIVE split unsplit Spark
VARIABLE dens TYPE: PER_VOLUME
.
.
VARIABLE temperature
PARAMETER small         REAL    1.E-10
.
.
PARAMETER smlrho REAL    1.E-10

Dubey et al 2009: Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code
https://doi.org/10.1016/j.parco.2009.08.001

https://doi.org/10.1016/j.parco.2009.08.001
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Dividends from Investing in Design

52 Person years for infrastructure development
• Assume other communities reuse 75% of the 

infrastructure
• Saving of ~40 person years per new domain

Dubey et al 2017: The dividends of investing in computational software design: A case study
https://doi.org/10.1177/1094342017747692

https://doi.org/10.1177%2F1094342017747692
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Takeaways Until Now
• Differentiate between slow changing 

and fast changing components of your 
code

• Understand the requirements of your 
infrastructure

• Implement separation of concerns
• Design with portability, extensibility, 

reproducibility and maintainability in 
mind

• Do not design with a specific 
programming model in mind
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ANY QUESTIONS SO FAR?
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A New Paradigm Because of Platform Heterogeneity

• Question - do the design principles 
change?
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A New Paradigm Because of Platform Heterogeneity

• Question - do the design principles 
change?

• The answer is – not really
• The details get more involved

Platform complexity
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Requirements

Software Architecture API  Design

Implement
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A Design Model for Separation of Concerns

This is where maximum 
change is likely
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Design Guidance Articulated in the Panel Series

Design for Hierarchical parallelism

Design towards several thousand threads

Design for a hierarchical memory space

Design patterns that count, allocate, and reuse memory

Avoid exposing/using non-portable vendor-specific options
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Features and Abstractions that must Come in
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Approaches to Portability

Historically

• Hand-tune the code 
for the target

• Some teams are still 
doing it
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Approaches to Portability

Historically

• Hand-tune the code 
for the target

• Some teams are still 
doing it

Current Trend

• Have multiple 
implementations

• Use third party 
abstraction tools

Intermediate Option

• Refactor the code exposing 
opportunities for use of 
abstractions

• Figure out the parameters for 
plugging in abstractions

• Design composability into 
infrastructure

• Make tools, or leverage 
community tools that let you 
hand tune without all the pain
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Make the same code work on different devices

• A way to let compiler know that ”this” expression can be 
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas
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Assigning work within 
the node
• “Parallel For” or 

directives with  unified 
memory

• Directives or specific 
programming model for 
explicit data movement

More complex data 
orchestration system for 
asynchronous 
computation

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be 
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas
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Look at what is needed, design for commonalities, 
encode them

Assigning work within 
the node
• “Parallel For” or 

directives with  unified 
memory

• Directives or specific 
programming model for 
explicit data movement

More complex data 
orchestration system for 
asynchronous 
computation

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be 
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas
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Features and Abstractions that must Come in

Real view : A 
whole domain 
with many 
operators

Virtual view :
domain sections 
as stand-alone 
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and scaling
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Runtime 
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Load Distribution

Framework
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Virtual view
collection of
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optimization

Abstraction at 
solver level

code 
transformation

How do abstraction 
layers work
 Infer the structure of the code
 Infer the map between 

algorithms and devices
 Infer the data movements
 Map computations to devices
 These are specified either 

through constructs or pragmas 
Performance depends upon 
how well the mapping is 
done.
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Code for GPU
Subroutine recon(uPlus,uMinus,flux,iLow,iHigh,jLow,jHigh,lLow,kHigh)

real, pointer, dimension(:,:,:,:) :: uPlus,uMinus,flux
integer, iLow,iHigh,jLow,jHigh,kLow,kHigh
integer :: i1,i2,i3
do i3 = kLow,kHigh

do i2 = jLow,jHigh
do i1 = iLow, iHigh

if (flux(HY_MASS ,i1,i2,i3) > 0.) then
flux(HY_NUM_FLUX+1:NFLUXES ,i1,i2,i3) = &

uPlus(HY_NUM_VARS+1:NRECON ,i1,i2,i3)* &
flux(HY_MASS ,i1,i2,i3)

else
flux(HY_NUM_FLUX+1:NFLUXES ,i1,i2,i3 ) =  &

uMinus(HY_NUM_VARS+1:NRECON ,i1,i2,i3)* &
flux(HY_MASS ,i1,i2,i3)

end if
enddo

enddo
enddo

Code for CPU
subroutine recon(uPlus,uMinus,flux)

real, pointer, dimension(:) :: uPlus,uMinus,flux
if (flux(HY_MASS ) > 0.) then

flux(HY_NUM_FLUX+1:NFLUXES ) = &
uPlus(HY_NUM_VARS+1:NRECON )* &
flux(HY_MASS)

else
flux(HY_NUM_FLUX+1:NFLUXES ) =  &

uMinus(HY_NUM_VARS+1:NRECON )* &
flux(HY_MASS)

end if

Example from Fortran with key-dictionary

• A computation on a 4D array 
• 1 dimension for state variables

• Copied into temporaries: uPlus, uMinus and 
flux

Design for Performance Portability
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Code for GPU
Subroutine recon(uPlus,uMinus,flux,iLow,iHigh,jLow,jHigh,lLow,kHigh)

real, pointer, dimension(:,:,:,:) :: uPlus,uMinus,flux
integer, iLow,iHigh,jLow,jHigh,kLow,kHigh
integer :: i1,i2,i3
do i3 = kLow,kHigh

do i2 = jLow,jHigh
do i1 = iLow, iHigh

if (flux(HY_MASS ,i1,i2,i3) > 0.) then
flux(HY_NUM_FLUX+1:NFLUXES ,i1,i2,i3) = &

uPlus(HY_NUM_VARS+1:NRECON ,i1,i2,i3)* &
flux(HY_MASS ,i1,i2,i3)

else
flux(HY_NUM_FLUX+1:NFLUXES ,i1,i2,i3 ) =  &

uMinus(HY_NUM_VARS+1:NRECON ,i1,i2,i3)* &
flux(HY_MASS ,i1,i2,i3)

end if
enddo

enddo
enddo

Code for CPU
subroutine recon(uPlus,uMinus,flux)

real, pointer, dimension(:) :: uPlus,uMinus,flux
if (flux(HY_MASS ) > 0.) then

flux(HY_NUM_FLUX+1:NFLUXES ) = &
uPlus(HY_NUM_VARS+1:NRECON )* &
flux(HY_MASS)

else
flux(HY_NUM_FLUX+1:NFLUXES ) =  &

uMinus(HY_NUM_VARS+1:NRECON )* &
flux(HY_MASS)

end if

Design for Performance Portability
Example from Fortran with key-dictionary

• A computation on a 4D array 
• 1 dimension for state variables

• Copied into temporaries: uPlus, uMinus and 
flux

• Different dimensionalities for the temporaries
• No do loop vs explicit do loop in the kernel 
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Step 1: temporaries and arguments

Key Definitions for CPU
[hy_recon_args]
uPlus, uMinus, flux

[hy_recon_declare]
real, pointer, dimension(:) :: uPlus, uMinus,flux

Key Definitions for GPU
[hy_recon_args]
uPlus, uMinus, 
flux,iLow,iHigh,jLow,jHigh,kLow,kHigh

[hy_recon_declare]
real, pointer, dimension(:,:,:,:) :: uPlus, uMinus, flux
integer :: iLow,iHigh,jLow,jHigh,kLow,kHigh

Design for Performance Portability

Step 2: constructs

Key definitions for CPU kernels (null)

[hy_ind3spec]    [hy_inline_loop] 

[hy_inline_loop_end]   

Key definitions for GPU kernels
[hy_inline_loop]
do i3 = kLow,kHigh

do i2 = jLow,jHigh
do i1 = iLow, iHigh

[hy_inline_loop_end]          [hy_ind3spec]
enddo ,i1,i2,i3

enddo
enddo
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Design for Performance Portability

Subroutine Definition
subroutine recon(@hy_recon_args)
@hy_recon_declare

@hy_inline_loop
if (flux(HY_MASS @hy_ind3spec) > 0.) then

flux(HY_NUM_FLUX+1:NFLUXES @hy_ind3spec) = & 
uPlus(HY_NUM_VARS+1:NRECON @hy_ind3spec)*  &
flux(HY_MASS @hy_ind3spec)

else
flux(HY_NUM_FLUX+1:NFLUXES @hy_ind3spec) = &

uMinus(HY_NUM_VARS+1:NRECON @hy_ind3spec)*  &
flux(HY_MASS @hy_ind3spec)

end if
@hy_inline_loop_end
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Design for Performance Portability

Subroutine Definition
subroutine recon(@hy_recon_args)
@hy_recon_declare

@hy_inline_loop
if (flux(HY_MASS @hy_ind3spec) > 0.) then

flux(HY_NUM_FLUX+1:NFLUXES @hy_ind3spec) = & 
uPlus(HY_NUM_VARS+1:NRECON @hy_ind3spec)*  &
flux(HY_MASS @hy_ind3spec)

else
flux(HY_NUM_FLUX+1:NFLUXES @hy_ind3spec) = &

uMinus(HY_NUM_VARS+1:NRECON @hy_ind3spec)*  &
flux(HY_MASS @hy_ind3spec)

end if
@hy_inline_loop_end

Ideally one would go 
through a similar 

exercise of locating 
good use of 

abstractions to 
obtain good results 

from using third-
party abstraction 

tools



33

Approaches to Portability

Historically

• Hand-tune the code 
for the target

• Some teams are still 
doing it

Current Trend

• Have multiple 
implementations

• Use third party 
abstraction tools

A highlight from the 
panel series is that 

users of Kokkos
and Raja derived 
greater benefit if 
they understood 

their code’s 
structure and needs

In other words, 
thought about 

design

Intermediate Option

• Refactor the code exposing 
opportunities for use of 
abstractions

• Figure out the parameters for 
plugging in abstractions

• Design composability into 
infrastructure

• Make tools, or leverage 
community tools that let you 
hand tune without all the pain



34

FINAL TAKEAWAYS
 The key to both performance portability and longevity is careful software design
 Extensibility should be built into the design
 Design should be independent of any specific programming model
 Composability and flexibility help with performance portability

RESOURCES:
https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://figshare.com/articles/presentation/SC20_Tutorial_Better_Scientific_Software/12994376?file=252193
46
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series

https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://figshare.com/articles/presentation/SC20_Tutorial_Better_Scientific_Software/12994376?file=25219346
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series
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