
exascaleproject.org

Software Design for Longevity with
Performance Portability

Anshu Dubey
Argonne National Laboratory

HPC-BP Webinar

December 9, 2020

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation is: Anshu Dubey, Software Design for Longevity with Performance Portability, HPC-BP

webinar, December 9, 2020 : DOI:10.6084/m9.figshare.13342265

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

3

HPC Computational Science Use-case

4

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

4

HPC Computational Science Use-case

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

Heterogeneous
models

5

Many components may be under research
Software continuously evolves
All use cases are different and unique
The US Exascale Computing Project (ECP) is at the

forefront of these challenges

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

5

HPC Computational Science Use-case

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

Heterogeneous
models

6

The ECP Performance Portability Series

• Motivation for the series
– Platforms differ

• What works well on one platform may not work equally well on others
• ECP community has experiences in a variety of approaches; there is acquired wisdom

– This wisdom should be shared as widely as possible
– Need was felt for in-depth discussions

• We had been considering focused in-person workshops
• Panel series became the best available alternative during time of social distancing

• Outcomes
– Share lessons learned, identify gaps, discover opportunities for partnerships
– Some basic design principles for performance portability also emerged

The objective of ECP is to have participating applications and software technologies
needed for their science be ready for the exascale platforms

For details about ECP please visit www.exascaleproject.org

For more information about the panel series please view
https://doi.org/10.6084/m9.figshare.13283714.v1

7

General Design Principles for HPC Scientific Software

Considerations

 Multidisciplinary teams
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others

Design Implications

 Separation of Concerns
 Shield developers from unnecessary

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities

8

General Design Principles for HPC Scientific Software

Design first, then apply programming model to the design instead of
taking a programming model and fitting your design to it.

9

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns

10

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and
compute
optimization

 Virtual view of domain and functionalities
 Decomposition into components and definition of interfaces

Example: Multiphysics PDEs for Distributed Memory Parallelism

11

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and
compute
optimization

 Virtual view of functionalities
 Decomposition into units and definition of

interfaces

Example: Multiphysics PDEs for Distributed Memory Parallelism

Implemented by
domain experts
and applied
mathematicians

Implemented by
software and
performance
engineers

12

Example: Design for Extensibility from FLASH
Assumed that capabilities will be added
for better models
• Assembly from components
• Decentralized maintenance of metadata
• Python tool to parse and configure
• OOP implemented through Unix directory

structure and configuration tool
Key idea is distributed intelligence

REQUIRES Driver
DEFAULT unsplit
EXCLUSIVE split unsplit Spark
VARIABLE dens TYPE: PER_VOLUME
.
.
VARIABLE temperature
PARAMETER small REAL 1.E-10
.
.
PARAMETER smlrho REAL 1.E-10

Dubey et al 2009: Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code
https://doi.org/10.1016/j.parco.2009.08.001

https://doi.org/10.1016/j.parco.2009.08.001

13

Dividends from Investing in Design

52 Person years for infrastructure development
• Assume other communities reuse 75% of the

infrastructure
• Saving of ~40 person years per new domain

Dubey et al 2017: The dividends of investing in computational software design: A case study
https://doi.org/10.1177/1094342017747692

https://doi.org/10.1177%2F1094342017747692

14

Takeaways Until Now
• Differentiate between slow changing

and fast changing components of your
code

• Understand the requirements of your
infrastructure

• Implement separation of concerns
• Design with portability, extensibility,

reproducibility and maintainability in
mind

• Do not design with a specific
programming model in mind

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

15

ANY QUESTIONS SO FAR?

16

A New Paradigm Because of Platform Heterogeneity

• Question - do the design principles
change?

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Heterogeneous
models

17

A New Paradigm Because of Platform Heterogeneity

• Question - do the design principles
change?

• The answer is – not really
• The details get more involved

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Heterogeneous
models

18

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns

This is where maximum
change is likely

19

Design Guidance Articulated in the Panel Series

Design for Hierarchical parallelism

Design towards several thousand threads

Design for a hierarchical memory space

Design patterns that count, allocate, and reuse memory

Avoid exposing/using non-portable vendor-specific options

20

Features and Abstractions that must Come in

Real view : A
whole domain
with many
operators

Virtual view :
domain sections
as stand-alone
computation unit

Offloading
and scaling
optimization

Spatial
Decomposition
Blocks/tiles

Runtime
management

Load Distribution

Framework

Functional
decomposition

Virtual view
collection of
components

Memory
access and
compute
optimization

Abstraction at
solver level

code
transformation

21

Approaches to Portability

Historically

• Hand-tune the code
for the target

• Some teams are still
doing it

22

Approaches to Portability

Historically

• Hand-tune the code
for the target

• Some teams are still
doing it

Current Trend

• Have multiple
implementations

• Use third party
abstraction tools

23

Approaches to Portability

Historically

• Hand-tune the code
for the target

• Some teams are still
doing it

Current Trend

• Have multiple
implementations

• Use third party
abstraction tools

Intermediate Option

• Refactor the code exposing
opportunities for use of
abstractions

• Figure out the parameters for
plugging in abstractions

• Design composability into
infrastructure

• Make tools, or leverage
community tools that let you
hand tune without all the pain

24

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas

25

Assigning work within
the node
• “Parallel For” or

directives with unified
memory

• Directives or specific
programming model for
explicit data movement

More complex data
orchestration system for
asynchronous
computation

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas

26

Look at what is needed, design for commonalities,
encode them

Assigning work within
the node
• “Parallel For” or

directives with unified
memory

• Directives or specific
programming model for
explicit data movement

More complex data
orchestration system for
asynchronous
computation

Make the same code work on different devices

• A way to let compiler know that ”this” expression can be
specialized in many ways

• Definition of specializations

Template meta-programming in abstraction layers

Underlying Ideas

27

Features and Abstractions that must Come in

Real view : A
whole domain
with many
operators

Virtual view :
domain sections
as stand-alone
computation unit

Offloading
and scaling
optimization

Spatial
Decomposition
Blocks/tiles

Runtime
management

Load Distribution

Framework

Functional
decomposition

Virtual view
collection of
components

Memory
access and
compute
optimization

Abstraction at
solver level

code
transformation

How do abstraction
layers work
 Infer the structure of the code
 Infer the map between

algorithms and devices
 Infer the data movements
 Map computations to devices
 These are specified either

through constructs or pragmas
Performance depends upon
how well the mapping is
done.

28

Code for GPU
Subroutine recon(uPlus,uMinus,flux,iLow,iHigh,jLow,jHigh,lLow,kHigh)

real, pointer, dimension(:,:,:,:) :: uPlus,uMinus,flux
integer, iLow,iHigh,jLow,jHigh,kLow,kHigh
integer :: i1,i2,i3
do i3 = kLow,kHigh

do i2 = jLow,jHigh
do i1 = iLow, iHigh

if (flux(HY_MASS ,i1,i2,i3) > 0.) then
flux(HY_NUM_FLUX+1:NFLUXES ,i1,i2,i3) = &

uPlus(HY_NUM_VARS+1:NRECON ,i1,i2,i3)* &
flux(HY_MASS ,i1,i2,i3)

else
flux(HY_NUM_FLUX+1:NFLUXES ,i1,i2,i3) = &

uMinus(HY_NUM_VARS+1:NRECON ,i1,i2,i3)* &
flux(HY_MASS ,i1,i2,i3)

end if
enddo

enddo
enddo

Code for CPU
subroutine recon(uPlus,uMinus,flux)

real, pointer, dimension(:) :: uPlus,uMinus,flux
if (flux(HY_MASS) > 0.) then

flux(HY_NUM_FLUX+1:NFLUXES) = &
uPlus(HY_NUM_VARS+1:NRECON)* &
flux(HY_MASS)

else
flux(HY_NUM_FLUX+1:NFLUXES) = &

uMinus(HY_NUM_VARS+1:NRECON)* &
flux(HY_MASS)

end if

Example from Fortran with key-dictionary

• A computation on a 4D array
• 1 dimension for state variables

• Copied into temporaries: uPlus, uMinus and
flux

Design for Performance Portability

29

Code for GPU
Subroutine recon(uPlus,uMinus,flux,iLow,iHigh,jLow,jHigh,lLow,kHigh)

real, pointer, dimension(:,:,:,:) :: uPlus,uMinus,flux
integer, iLow,iHigh,jLow,jHigh,kLow,kHigh
integer :: i1,i2,i3
do i3 = kLow,kHigh

do i2 = jLow,jHigh
do i1 = iLow, iHigh

if (flux(HY_MASS ,i1,i2,i3) > 0.) then
flux(HY_NUM_FLUX+1:NFLUXES ,i1,i2,i3) = &

uPlus(HY_NUM_VARS+1:NRECON ,i1,i2,i3)* &
flux(HY_MASS ,i1,i2,i3)

else
flux(HY_NUM_FLUX+1:NFLUXES ,i1,i2,i3) = &

uMinus(HY_NUM_VARS+1:NRECON ,i1,i2,i3)* &
flux(HY_MASS ,i1,i2,i3)

end if
enddo

enddo
enddo

Code for CPU
subroutine recon(uPlus,uMinus,flux)

real, pointer, dimension(:) :: uPlus,uMinus,flux
if (flux(HY_MASS) > 0.) then

flux(HY_NUM_FLUX+1:NFLUXES) = &
uPlus(HY_NUM_VARS+1:NRECON)* &
flux(HY_MASS)

else
flux(HY_NUM_FLUX+1:NFLUXES) = &

uMinus(HY_NUM_VARS+1:NRECON)* &
flux(HY_MASS)

end if

Design for Performance Portability
Example from Fortran with key-dictionary

• A computation on a 4D array
• 1 dimension for state variables

• Copied into temporaries: uPlus, uMinus and
flux

• Different dimensionalities for the temporaries
• No do loop vs explicit do loop in the kernel

30

Step 1: temporaries and arguments

Key Definitions for CPU
[hy_recon_args]
uPlus, uMinus, flux

[hy_recon_declare]
real, pointer, dimension(:) :: uPlus, uMinus,flux

Key Definitions for GPU
[hy_recon_args]
uPlus, uMinus,
flux,iLow,iHigh,jLow,jHigh,kLow,kHigh

[hy_recon_declare]
real, pointer, dimension(:,:,:,:) :: uPlus, uMinus, flux
integer :: iLow,iHigh,jLow,jHigh,kLow,kHigh

Design for Performance Portability

Step 2: constructs

Key definitions for CPU kernels (null)

[hy_ind3spec] [hy_inline_loop]

[hy_inline_loop_end]

Key definitions for GPU kernels
[hy_inline_loop]
do i3 = kLow,kHigh

do i2 = jLow,jHigh
do i1 = iLow, iHigh

[hy_inline_loop_end] [hy_ind3spec]
enddo ,i1,i2,i3

enddo
enddo

31

Design for Performance Portability

Subroutine Definition
subroutine recon(@hy_recon_args)
@hy_recon_declare

@hy_inline_loop
if (flux(HY_MASS @hy_ind3spec) > 0.) then

flux(HY_NUM_FLUX+1:NFLUXES @hy_ind3spec) = &
uPlus(HY_NUM_VARS+1:NRECON @hy_ind3spec)* &
flux(HY_MASS @hy_ind3spec)

else
flux(HY_NUM_FLUX+1:NFLUXES @hy_ind3spec) = &

uMinus(HY_NUM_VARS+1:NRECON @hy_ind3spec)* &
flux(HY_MASS @hy_ind3spec)

end if
@hy_inline_loop_end

32

Design for Performance Portability

Subroutine Definition
subroutine recon(@hy_recon_args)
@hy_recon_declare

@hy_inline_loop
if (flux(HY_MASS @hy_ind3spec) > 0.) then

flux(HY_NUM_FLUX+1:NFLUXES @hy_ind3spec) = &
uPlus(HY_NUM_VARS+1:NRECON @hy_ind3spec)* &
flux(HY_MASS @hy_ind3spec)

else
flux(HY_NUM_FLUX+1:NFLUXES @hy_ind3spec) = &

uMinus(HY_NUM_VARS+1:NRECON @hy_ind3spec)* &
flux(HY_MASS @hy_ind3spec)

end if
@hy_inline_loop_end

Ideally one would go
through a similar

exercise of locating
good use of

abstractions to
obtain good results

from using third-
party abstraction

tools

33

Approaches to Portability

Historically

• Hand-tune the code
for the target

• Some teams are still
doing it

Current Trend

• Have multiple
implementations

• Use third party
abstraction tools

A highlight from the
panel series is that

users of Kokkos
and Raja derived
greater benefit if
they understood

their code’s
structure and needs

In other words,
thought about

design

Intermediate Option

• Refactor the code exposing
opportunities for use of
abstractions

• Figure out the parameters for
plugging in abstractions

• Design composability into
infrastructure

• Make tools, or leverage
community tools that let you
hand tune without all the pain

34

FINAL TAKEAWAYS
 The key to both performance portability and longevity is careful software design
 Extensibility should be built into the design
 Design should be independent of any specific programming model
 Composability and flexibility help with performance portability

RESOURCES:
https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://figshare.com/articles/presentation/SC20_Tutorial_Better_Scientific_Software/12994376?file=252193
46
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series

https://www.exascaleproject.org/
https://doi.org/10.6084/m9.figshare.13283714.v1
https://figshare.com/articles/presentation/SC20_Tutorial_Better_Scientific_Software/12994376?file=25219346
https://bssw.io/blog_posts/performance-portability-and-the-exascale-computing-project
https://www.exascaleproject.org/event/kokkos-class-series

	Software Design for Longevity with Performance Portability
	License, Citation and Acknowledgements
	Slide Number 3
	Slide Number 4
	Slide Number 5
	The ECP Performance Portability Series
	General Design Principles for HPC Scientific Software
	Slide Number 8
	A Design Model for Separation of Concerns
	Example: Multiphysics PDEs for Distributed Memory Parallelism
	Example: Multiphysics PDEs for Distributed Memory Parallelism
	Example: Design for Extensibility from FLASH
	Dividends from Investing in Design
	Takeaways Until Now
	Slide Number 15
	A New Paradigm Because of Platform Heterogeneity
	A New Paradigm Because of Platform Heterogeneity
	A Design Model for Separation of Concerns
	Design Guidance Articulated in the Panel Series
	Features and Abstractions that must Come in
	Approaches to Portability
	Approaches to Portability
	Approaches to Portability
	Underlying Ideas
	Underlying Ideas
	Underlying Ideas
	Features and Abstractions that must Come in
	Slide Number 28
	Design for Performance Portability
	Design for Performance Portability
	Design for Performance Portability
	Design for Performance Portability
	Approaches to Portability
	Slide Number 34

