
Scalable Precision Tuning of
Numerical Software

Cindy Rubio-González
Department of Computer Science

University of California, Davis

Best Practices for HPC Software Developers Webinar, October 14th, 2020

• Reasoning about floating-point programs is difficult
o Large variety of numerical problems
o Most programmers not expert in floating point

• Common practice: use highest
available precision
- Disadvantage: more expensive!

• Automated techniques for tuning precision
Given : Accuracy Requirement
Action: Reduce precision
Goal : Accuracy and/or Performance

2

Floating-Point Precision Tuning

1 long double fun(long double p) {
2 long double pi = acos(-1.0);
3 long double q = sin(pi * p);
4 return q;
5 }
6
7 void simpsons() {
8 long double a, b;
9 long double h, s, x;

10 const long double fuzz = 1e-26;
11 const int n = 2000000;
12 …
18 L100:
19 x = x + h;
20 s = s + 4.0 * fun(x);
21 x = x + h;
22 if (x + fuzz >= b) goto L110;
23 s = s + 2.0 * fun(x);
24 goto L100;
25 L110:
26 s = s + fun(x);
27 …
28 }

3Original Program

Precision Tuning Example

Tuned Program
Error threshold 10-8

4Original Program

Precision Tuning Example

Tuned Program

1 long double fun(double p) {
2 double pi = acos(-1.0);
3 long double q = sinf(pi * p);
4 return q;
5 }
6
7 void simpsons() {
8 float a, b;
9 double s, x; float h;

10 const long float fuzz = 1e-26;
11 const int n = 2000000;
12 …
18 L100:
19 x = x + h;
20 s = s + 4.0 * fun(x);
21 x = x + h;
22 if (x + fuzz >= b) goto L110;
23 s = s + 2.0 * fun(x);
24 goto L100;
25 L110:
26 s = s + fun(x);
27 …
28 }

1 long double fun(long double p) {
2 long double pi = acos(-1.0);
3 long double q = sin(pi * p);
4 return q;
5 }
6
7 void simpsons() {
8 long double a, b;
9 long double h, s, x;

10 const long double fuzz = 1e-26;
11 const int n = 2000000;
12 …
18 L100:
19 x = x + h;
20 s = s + 4.0 * fun(x);
21 x = x + h;
22 if (x + fuzz >= b) goto L110;
23 s = s + 2.0 * fun(x);
24 goto L100;
25 L110:
26 s = s + fun(x);
27 …
28 }

Tuned program runs 78.7% faster!

• Searching efficiently over variable types and
function implementations
– Naïve approach → exponential time

• 2n or 3n where n is the number of variables
– Global minimum vs. a local minimum

• Evaluating type configurations
– Less precision → not necessarily faster
– Based on run time, energy consumption, etc.

• Determining accuracy constraints
– How accurate must the final result be?
– What error threshold to use?

Challenges in Precision Tuning

5

• Reducing precision vs. improving performance
– Different objectives

• Dynamic vs. static approaches
– Dynamic: Performed at runtime, requires program inputs,

handles larger and more complex code, no guarantees for
untested inputs

– Static: Analyzes program without running it, limitations with
certain program structures (e.g., loops), formal guarantees for
analyzed code

• Instructions vs. variables vs. function calls
– Various granularities of program transformation
– Different scopes

• Binary vs. IR vs. source code
– Tradeoff between granularity of transformation and tool usability

Precision Tuning Approaches

6

7

Dynamic Tools for Precision Tuning

Precimonious

HiFPTuner
• Hierarchical Precision Tuner

– Leverages relationship among variables to
reduce search space and number of runs

• Dynamic Analysis for Precision Tuning
– Black-box approach to systematically

search over variable types and functions

TYPE
CONFIGURATION

PRECIMONIOUS

TEST
INPUTS

SOURCE
CODE

PRECIMONIOUS

Annotated with
error threshold

Less Precision

Speedup

Result within error threshold
for all test inputs

8

Search over types of variables
and function implementations

C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D.H. Bailey, C. Iancu, and D. Hough.
“Precimonious: Tuning Assistant for Floating-Point Precision”, SC 2013.

https://github.com/ucd-plse/precimonious
Dynamic Analysis for Floating-Point Precision Tuning

https://github.com/ucd-plse/precimonious

• Based on the Delta-Debugging Search Algorithm [1]
• Change the types of variables and function calls

– Examples: double x → float x, sin → sinf
• Our success criteria

– Resulting program produces an “accurate enough” answer
– Resulting program is faster than the original program

• Main idea
– Start by associating each variable with set of types

• Example: x → {long double, double, float}
– Refine set until it contains only one type

• Find a local minimum
– Lowering the precision of one more variable violates success criteria

Search Algorithm

9[1] A. Zeller and R. Hildebrandt. “Simplifying and Isolating Failure-Inducing Input”, TSE 2002.

✘

double
precision

single
precision

Searching for Type Configuration

10

✘

double
precision

single
precision

✘ ✘

Searching for Type Configuration

11

✘

double
precision

single
precision

✘ ✘

Searching for Type Configuration

12

✘

double
precision

single
precision

✘ ✘

Searching for Type Configuration

13

✘

double
precision

single
precision

✘ ✘

✘

Searching for Type Configuration

14

✘

double
precision

single
precision

✘ ✘

✘

Searching for Type Configuration

15

✘

double
precision

single
precision

✘ ✘

✘
…Failed configurations

Proposed configuration

Searching for Type Configuration

16

• Automatically generate program variants
– Reflect type configurations produced by the algorithm

• Intermediate representation
– LLVM IR

• Transformation rules for each LLVM instruction
– alloca, load, store, fadd, fsub, fpext, fptrunc, etc.
– Changes equivalent to modifying the program at the source level
– Clang plugin to provide modified source code

• Able to run resulting modified program
– Evaluate type configuration: accuracy & performance

Applying Type Configuration

17

• Precimonious is open source
– Most recent version can be found at

https://github.com/ucd-plse/precimonious

• Dockerfile and examples
– Tutorial on Floating-Point Analysis Tools at SC’19 and PEARC’19

http://fpanalysistools.org
– Dockerfile and examples can be found at

https://github.com/ucd-plse/tutorial-precision-tuning

Where to Find Precimonious

18

https://github.com/ucd-plse/precimonious
http://fpanalysistools.org/
https://github.com/ucd-plse/tutorial-precision-tuning

• Initial requirements
– Does your program compile with clang?
– Where does your program store the result?
– How much error are you willing to tolerate?

• Examples: 10-4,10-6, 10-8, and 10-10

– Do you have representative inputs to use during tuning?

• Optional information
– Are there specific functions/variables to focus on, or to ignore

during tuning?

• What you get
– Listing of variables (and function) and their proposed types
– Useful start point to identify areas of interest

How to Use Precimonious

19

• Type configurations rely on program inputs tested
– No guarantees if worse conditioned input
– Use representative inputs whenever possible
– Consider input generation tools, e.g., S3FP [1], FPGen [2], etc.

• Analysis scalability
– Scalability limitations when tuning long-running applications
– Need to reduce search space, and reduce number of runs
– Consider starting with a specific area of the program
– Consider synthesizing smaller workloads

• Analysis effectiveness
– Black-box approach does not exploit relationship among variables

Limitations and Recommendations

20
[1] W. Chiang, G. Gopalakrishnan, Z. Rakamaric and A. Solovyev. “Efficient Search for Inputs Causing High Floating-point Errors”, PPoPP 2014.
[2] H. Guo and C. Rubio-González. “Efficient Generation of Error-Inducing Floating-Point Inputs via Symbolic Execution”, ICSE 2020.

21

Dynamic Tools for Precision Tuning

Precimonious
• Dynamic Analysis for Precision Tuning

– Black-box approach to systematically
search over variable types and functions

HiFPTuner
• Hierarchical Precision Tuner

– Leverages relationship among variables to
reduce search space and number of runs

22

• Precimonious follows a black-box approach
- Related variables assigned types independently
- Large number of variables → Slow search
- More type casts → Less speedup

Local minimum Global minimumOriginal
Uses lower precision
Speedup: 78.7%

Shifts precision less often
Speedup: 90%

Impact of Precision Shifting

23

• White box nature
- Related variables pre-grouped into hierarchy → Same type
- Fewer groups in search space → Faster search
- Fewer type casts → Larger speedups

• Can we leverage the program to perform a more
informed precision tuning?

1 2 3 4 5 6 7 8

1 4 3 6 8 2 5 7

3 6 81 4 2 5 7

Se
ar

ch
 to

p
to

 b
ot

to
m

Level 0

Level 1

Level 2

Exploiting Community Structure

Speeds up program by
reducing precision with
respect to accuracy
constraint

24

HiFPTuner Approach

SOURCE
CODE

1. Type Dependence Analysis + Edge Profiling

Weighted
Dependence Graph

TEST
INPUTS

2. Iterative Community Detection + Ordering

Ordered Community
Structure of Variables 3.

 H
ie

ra
rc

hi
ca

l P
re

ci
si

on
 T

un
in

g

TYPE
CONFIGURATION

Accuracy Constraint

H. Guo and C. Rubio-González. “Exploiting Community Structure for Floating-Point Precision Tuning”, ISSTA 2018.
M. Girvan and M.E. Newman. “Community Structure in Social and Biological Networks”, NAS 2002.
F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. “Defining and Identifying Communities in Networks”, NAS 2004.

https://github.com/ucd-plse/HiFPTuner
Hierarchical Floating-Point Precision Tuning

https://github.com/ucd-plse/HiFPTuner

25

Simpsons Example

pi, p, q a, b, h, x s

a b h pi p q x s

F�

[D K E T S

F�

SL

F�
�������

������� �������

�������

�������

� � �
�������

�������
�������

�������

�������

V

��7RS

���%RWWRP
[D K E T S

F�

SL

F�F�

V

Found global minimum configuration that leads to 90% speedup!

D

K

[

E

IX]]

V

9DULDEOH�GHSHQGHQFH

S T

SL

9DULDEOHV�
YDULDEOHV�LQ�PDLQ�
YDULDEOHV�LQ�IXQ

�

�

�

�������

�������

�������

�������
�������

�������

Weighted dependence graph Ordered community structure

HiFPTuner explores 24 configurations, almost 5x fewer configurations

• Items at top level of hierarchy reduced by 53% on
average in comparison to Precimonious

• Higher search efficiency over Precimonious for 75% of
the programs in our study
– Explored 45% fewer configurations

• HiFPTuner finds better configurations for half of the
programs, with up to 90% speedup

Better Scalability & Speedup

26

• HiFPTuner is open source
– https://github.com/ucd-plse/HiFPTuner

• Dockerfile and examples
– Tutorial on Floating-Point Analysis Tools at SC’19 and PEARC’19

http://fpanalysistools.org
– Dockerfile and examples can be found at

https://github.com/ucd-plse/tutorial-precision-tuning

• Same requirements as Precimonious

Where to Find HiFPTuner

27

https://github.com/ucd-plse/
http://fpanalysistools.org/
https://github.com/ucd-plse/tutorial-precision-tuning

+ Considers both accuracy and
performance

+ Works for medium size non-
trivial programs

+ Easily configurable

- Requires a run for each type
configurations

- Ordering of variables may
give different results

+ White-box hierarchical
approach, groups variables
based on their usage

+ Over twice as fast as
Precimonious

+ Finds configurations that lead
to higher speedups

- Requires program profiling
- Still requires a run for each

type configuration

+ Performs shadow execution,
requires a single run of the
program

+ Identifies variables that can
be single precision

+ Combined with Precimonious
leads to 9x faster analysis

- Focuses on accuracy, not
performance

- 50x overhead by shadow
execution engine

- Still black box approach

Comparison of Precision Tuners

28

Precimonious

HiFPTuner

Blame Analysis [1]

PROS CONS

[1] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Kahan, C. Iancu, W. Lavrijsen, D.H. Bailey and D. Hough.
“Floating-Point Precision Tuning Using Blame Analysis”, ICSE 2016.

1. Type configurations rely on program inputs tested
– How problematic is this for HPC applications?
– Can we leverage application-dependent correctness metrics?

2. Analysis scalability
– How can we further reduce the search space?
– How can we reduce the number of program runs?

3. Analysis effectiveness
– How far are we from the best configuration(s)?
– Are there other program transformations to explore?
– Can we incorporate domain knowledge to guide search?

4. Benchmarks
– Difficult to find programs to test precision tuners at scale
– Need for collaboration between application and tool developers

Current Challenges for HPC Applications

29

• Other recent precision tuners

Some Useful Resources

30

• An exhaustive list of tools: https://fpbench.org/community.html

I. Laguna, P.C. Wood, R. Singh and S. Bagchi. “GPUMixer: Performance-Driven Floating-Point Tuning for
GPU Scientific Applications”, ISC 2019.
M. Lam, T. Vanderbruggen, H. Menon and M. Schordan. “Tool Integration for Source-Level Mixed
Precision”. CORRECTNESS@SC 2019.
S. Cherubin, D. Cattaneo, M. Chiari and G. Agosta. “Dynamic Precision Autotuning with TAFFO”. ACM
Trans. Archit. Code Optim. 2019.
P.V. Kotipalli, R. Singh, P. Wood, I. Laguna and S. Bagchi. “AMPT-GA: Automatic Mixed Precision
Floating Point Tuning for GPU Applications”. ICS 2019.
H. Menon, M. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd, K. Mohror and J. Hittinger. “ADAPT:
Algorithmic Differentiation Applied to Floating-Point Precision Tuning”, SC 2018.

E. Darulova, E. Horn and S. Sharma. “Sound Mixed-Precision Optimization with Rewriting”. ICCPS 2018.
W. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrishnan and Z. Rakamaric. “Rigorous
Floating-Point Mixed-Precision Tuning”. POPL 2017.

• Check out recent survey on reduced precision
S. Cherubin and G. Agosta. “Tools for Reduced Precision Computation: A Survey. ACM Computing
Surveys 2020.

https://fpbench.org/community.html

SC Workshop on Software Correctness

31

Co-Organized with Ignacio Laguna from Lawrence Livermore National Lab
November 11th, 2020 (half day, 2:30pm to 6:30pm EDT)

• Precision tuning can have an important impact on the
performance of HPC applications

• Many techniques for precision tuning
– Different approaches: dynamic vs. static

• We discussed two of our tools for precision tuning
– Precimonious and HiFPTuner

• A lot of progress, but there are still challenges and
opportunities to apply precision tuning at scale

• Application and tool developers must work together to
improve scalability and effectiveness of precision tuning

Summary

32

Collaborators

Cuong
Nguyen

Diep
Nguyen

James
Demmel

William
Kahan

Koushik
Sen

David
Bailey

Costin
Iancu

David
Hough

UC Berkeley

OracleLBNL

Ben
Mehne

Wim
Lavrijsen

33

Hui
Guo

UC Davis

Acknowledgements/Sponsors

34

