Nasir Eisty

Assistant Professor Dept. of CSSE Cal Poly State University San Luis Obispo, California

Testing and Code Review Practices in Research Software

Who Am I?

CAL POLY

Computer Science & Software Engineering COLLEGE OF ENGINEERING

College of Engineering Computer Science

F

15 % 0 % F 1 6 % H 1

K al

3/

8

Software Quality

Contents

Part #1

Testing Research Software: A survey

Online Survey

•••

Very Good

Good

Averac

Please Rate

3

Your Experierce

Part #1 (Testing) Outline

- Demographics
- Level of knowledge research software developers have on testing
- Current testing practices in research software community
- Difficulties to test research software
- Compatibility of Commercial/IT testing techniques
- Improvement of the testing process in research software

Part #1 (Testing) Outline

- Demographics
- Level of knowledge research software developers have on testing
- Current testing practices in research software community
- Difficulties to test research software
- Compatibility of Commercial/IT testing techniques
- Improvement of the testing process in researach software

Roles

Years Worked

Project Stage

Developers

Part #1 (Testing) Outline

- Demographics
- Level of knowledge research software developers have on testing
- Current testing practices in research software community
- Difficulties to test research software
- Compatibility of Commercial/IT testing techniques
- Improvement of the testing process in research software

Knowledge of Testing

Understanding Testing Concepts USED

Understanding Testing Concepts NEEDED

Part #1 (Testing) Outline

- Demographics
- Level of knowledge research software developers have on testing
- Current testing practices in research software community
- Difficulties to test research software
- Compatibility of Commercial/IT testing techniques
- Improvement of the testing process in research software

Testing Goals

Testing Methods Used

Usefulness

Part #1 (Testing) Outline

- Demographics
- Level of knowledge research software developers have on testing
- Current testing practices in research software community
- Difficulties to test research software
- Compatibility of Commercial/IT testing techniques
- Improvement of the testing process in research software

Complexity to Test

Challenges

Test case design Lack of resources External dependencies Lack of knowledge Slow Culture Affects CI Comparing with reality Codebase Legacy code Cost Other 10 15 20 25 0 5 30 Count

Part #1 (Testing) Outline

- Demographics
- Level of knowledge research software developers have on testing
- Current testing practices in research software community
- Difficulties to test research software
- Compatibility of Commercial/IT testing techniques
- Improvement of the testing process in research software

Commercial/IT Testing Methods - Team

Commercial/IT Testing Methods- Individual

Value Seen in Comm/IT Testing Methods

Challenges to Adapt Comm/IT Methods

Not useful Lack of resources Mindset Lack of knowledge Infrastructure Cost Difficult to use Runtime restrictions Other

Challenges Not Met by Comm/IT Methods

Part #1 (Testing) Outline

- Demographics
- Level of knowledge research software developers have on testing
- Current testing practices in research software community
- Difficulties to test research software
- Compatibility of Commercial/IT testing techniques
- Improvement of the testing process in research software

Testing Improvements

Training More tests Infrastructure Acknowledgement Improve code quality Culture Continuous integration Automation Make simpler Resources

Discussion

- Researchers pose a clear goal of testing their project
- Complexity associated with the process needs further attention
- Make a culture of testing in the research software community.
- Providing proper training and resources can improve the testing process in research software.

Part #2

Peer Code Review in Research Software

Part #2 (Code Review) Outline

- Demographics
- Current code review practices in research software
- Impacts of the code review process in research software
- Difficulties develoers face during code review
- Potential areas of improvement in the review process

Part #2 (Code Review) Outline

- Demographics
- Current code review practices in research software
- Impacts of the code review process in research software
- Difficulties develoers face during code review
- Potential areas of improvement in the review process

Years Worked

Role

Balance as a Reviewee and Reviewer

Part #2 (Code Review) Outline

- Demographics
- Current code review practices in research software
- Impacts of the code review process in research software
- Difficulties develoers face during code review
- Potential areas of improvement in the review process

Percentage of Code Undergo Review

Time Spent on Code review

Time For a First Response

Time For a Final Decision

Problems Identified

Positive Experience

Negative Experience

Part #2 (Code Review) Outline

- Demographics
- Current code review practices in research software
- Impacts of the code review process in research software
- Difficulties develoers face during code review
- Potential areas of improvement in the review process

Why Code Review is Important

How Code Review Improves Code

Correctness Improve readability More Eyes Better maintainability Improve design Knowledge sharing Improves reliability Better style Documentation Other

Decrease Code Complexity

Part #2 (Code Review) Outline

- Demographics
- Current code review practices in research software
- Impacts of the code review process in research software
- Difficulties develoers face during code review
- Potential areas of improvement in the review process

Challenges

Barriers

Part #2 (Code Review) Outline

- Demographics
- Current code review practices in research software
- Impacts of the code review process in research software
- Difficulties developers face during code review
- Potential areas of improvement in the review process

Improvements

Discussion

- Research software developers employ an informal code review process
- Code review has an overall positive impact
- Most common difficulty reported by participants is finding time to to do it and understand other people's code.
- Formalizing the review process by including more people, more training, and providing compensation could potentially improve the code review process.

- Provide enough training on software testing to all kinds of research software developers ranging from graduate students to experienced researchers
- Incorporate more tests that can solve specific needs of the research software
- Provide infrastructure support, for example, a public service for testing including many-tier pricing structure for machine time and a sophisticated testing dashboard

- Provide automation for setting tests and analysis of the results
- Improve continuous integration system to facilitate a better way of testing, especially, the incoming tests during down time
- Make a culture of testing in the team and encourage others by sharing the benefits from the experience of testing
- Improve the quality of the code so that developers can write tests easily

- Provide proper acknowledgement of developers for contributions in testing
- Make the testing process simpler so that it is easy to adopt in the project
- Provide enough resources to developers so that they can utilize the resources to develop test suits

- Make code review process more formal with a structured guideline for each step of the process
- Try to ensure at least one science review and one technical review
- Include automatic tools in the code review process and train your peer reviewers the best practices to use the tool

- Encourae more people to participate in the review process and allocate some time to do the review
- Provide incentives or rewards to reviewers to participate in code review
- Allocate sufficient time in the development process to perform code review
- Provide faster feedback to any incoming review request

- Train reviewers on how to phrase good feedback
- Train developers to forget their egos and accept comments from the reviewers to improve their code
- Make the overall code review process faster
- Provide necessary support from the administrative level that encourages people to participate in the code review process

Acknowledgement

Dr. Jeffrey Carver University of Alabama Dr. George Thiruvathukal Loyola University Chicago Dr. David Bernholdt Oak Ridge National Laboratory

Dr. Hai Ah Nam Los Alamos National Laboratory Dr. Danny Perez Los Alamos National Laboratory Dr. J. Dave Moulton Los Alamos National Laboratory

Dr. Roland Haas National Center for Supercomputing Applications

Dr. Gabrielle Allen National Center for Supercomputing Applications Dr. Daniel Katz National Center for Supercomputing Application

NSF grant 1445344

Nasir Eisty neisty@calpoly.edu