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Connections between CoPA & EXAALT & LAMMPS

 ECP EXAALT project seeks to extend accuracy, length, and time scales of material 
science simulations for fission/fusion reactors using LAMMPS MD

 EXAALT wants to run millions of small MD replicas (1K to 1M atoms) via ParSplice
as fast as possible (not one large simulation with billions of atoms)

 Primary KPP target is MD of nuclear fusion materials that uses the SNAP 
interatomic potential in LAMMPS

 Performance directly depends on single-node performance for SNAP

 ECP CoPA codesign project targeting MD as one of its "sub-motifs"
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Summary of EXAALT KPP Improvements 

LAMMPS/Kokkos SNAP GPU FOM Improvements 
(Summit Full-Machine)

Aurora/Frontier 
Target FOM (50x)

http://exascaleproject.org
"Episode 44: ECP Team 
Reengineers Materials 
Simulation Code, Achieves 
Atypical Performance Increase"

Baseline GPU code by 
Christian Trott and Stan 
Moore
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EXAALT Performance Improvements

 Joint effort by Aidan Thompson (EXAALT), Stan Moore (CoPA), Rahul Gayatri (NESAP), Sarah Anderson 

(Cray), Evan Weinberg (NVIDIA)

 Created stripped-down proxy code (TestSNAP)

 Completely rewrote TestSNAP to reduce flops and memory

 Explored many different GPU strategies, using OpenACC and CUDA

 Ported best implementation back to production code with Kokkos

 Other kernels required for ParSplice (time stepping, minimization) also implemented on accelerators 

 These kernels account for essentially all of the flops in base challenge
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o ML interatomic potential (IAP) have three critical parts:

• Descriptors of the local environment

• Energy and force functions expressed in the descriptors

• Training(regression method) on large amount of ‘ground 

truth’ energies and forces

o Demonstrated ab initio accuracy in classical MD!

Training 
Data

FitSNAP

Chemistry    Application           # Configs  Year

Ta                  Plasticity                  363         2014

In,P               Intrinsic Defects      665        2015

W,He Fusion Energy         2,800      2017

W,Be Fusion Energy        25,000     2018

Actinides       Shock Physics        20,000     2018

W,H               Fusion Energy       40,000      2019

C                   Shock Physics        10,000      2019

HEA               Add. Manufact.   >20,000     2019

W,N              Fusion Energy        35,000     2019

SNAP: Spectral Neighbor Analysis Potential

5



SNAP: Spectral Neighbor Analysis Potential
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Geometric 
descriptors
of atomic 

environments 

Energy as a 
function of 
geometric 
descriptors

• GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., Phys. Rev. Lett, 2010. Uses 3D neighbor density 

bispectrum and Gaussian process regression

• SNAP (Spectral Neighbor Analysis Potential): Our SNAP approach uses GAP’s neighbor bispectrum, but replaces 

Gaussian process with linear regression. 

- More robust

- Lower computational cost (training and predicting)

- Decouples MD speed from training set size

- Enables large training data sets, more bispectrum coefficients

- Straightforward sensitivity analysis

- Fast



SNAP Bispectrum Components
 Neighbors of each atom are mapped onto unit sphere in 4D

3𝐷𝐷 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵: 𝑟𝑟, 𝜃𝜃,𝜙𝜙 , 𝑟𝑟 < 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 ⟹ 4𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆: (𝜃𝜃0, 𝜃𝜃,𝜙𝜙),𝜃𝜃0 =
𝑟𝑟

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐
𝜋𝜋

 Expand density around each atom in a basis of 4D hyperspherical harmonics, 

 Bispectrum components of the 4D hyperspherical harmonic expansion are used as the 

geometric descriptors of the local environment

• Preserves universal physical symmetries

• Rotation, translation, permutation

• Size-consistent (extensible)
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SNAP Force Calculation

• Deeply nested loops

• Loop structure not regular

• Loop sizes <= 14
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Original Kokkos Version of SNAP 

 Christian Trott (SNL) created the original Kokkos

version in the ExaMiniMD proxy app

 Used advanced Kokkos features: three levels of 

hierarchical parallelism and shared scratchpad 

memory (global)

 Very memory compact

 Stan Moore (SNL) ported this version to the 

LAMMPS KOKKOS package

 Not clear of the possible improvements, if any…
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SNAP Performance before Jan2019 
Hackathon 
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SNAP Benchmarking on Summit

 EXAALT FOM benchmark uses 205 bispectrum coefficients, tungsten crystal

 Mira (IBM BG/Q) FOM baseline: 0.182 Katoms-steps/s/node * 49152 Mira nodes

 On Summit, run 6 GPU + 1 CPU (36 cores) replicates per node

 2018 LAMMPS performance on Summit: 33.7 Katom-steps/s/node * 4608 Summit 

nodes: projected 17.4x faster than Mira baseline
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KPP: Challenges
 SNAP fraction-of-peak performance has been steadily 

declining on most hardware

 Recommendation from 2018 EXAALT review was to focus 

on SNAP GPU performance 

 Developed a collaboration between EXAALT, CoPA, and 

NERSC/NESAP in order to address this risk

Architecture Year Normalized 
fraction of 
peak

Intel 
SandyBridge/Chama

2012 1.0

IBM PowerPC/Mira 2012 0.23

AMD CPU/Titan 2013 0.71

NVIDIA K20X/Titan 2013 0.037

Intel Haswell/Trinity 2016 0.47

Intel KNL/Trinity 2016 0.080

NVIDIA P100/SNL 
testbed

2016 0.077

Intel Broadwell/Serrano 2017 0.39

NVIDIA V100/SNL 
testbed

2018 0.093

Benchmarks for 2000 SNAP atoms
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TestSNAP – standalone independent SNAP 
module

 Standalone SNAP kernel mini app derived from CPU version (90% similar)

 Proxy in memory and computation

 Included correctness check

 Blank slate to try something new without biases

 Initial OpenACC port very slow 
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Kernel refactor

for atom i {
for neighbor j {

function_1()
function_2()
…

}
}

for atom i {
for neighbor j {

function_1()
}

}

for atom i {
for neighbor j {

function_2()
}

}
…

• Broke one large kernel into many 
smaller kernels, helps reduce register 
pressure

• Reordered loop structure

• Works because kernel launch latency 
negligible compared to kernel execution 
time

• Atypical: usually need to fuse kernels 
instead

• Greatly increases memory footprint, 
must store intermediate results
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During Jan~2019 hackathon

• Break up the compute kernels 

• Store atom specific information across 

kernels

• Increases memory footprint

• Distribute the atom specific work in each 

kernel over the threadblocks and threads 

of a threadblock
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Parallelize over atoms and neighbors

Could only fit the smaller 
problem size in the GPU 
memory (16GBs)
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Post Jan-2019 hackathon

 Nick Lubbers (EXAALT, LANL) suggested re-arranging the order of summation 

(Y-array trick) 

 Memory footprint was reduced by 20x by compacting multi-dimensional arrays 

in to simple lists

 Y-array trick was first applied to the sequential memory and merged into 

Kokkos-LAMMPS in June 2019

 Allowed the FOM 2J14 benchmark into the memory
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Y-array Trick

• New algorithm: Pre-compute Y factors 
outside neighbor loop

• Cost of neighbor loop is now negligible
• Dominated by Y pre-compute O(J^7)
• 2x reduction in Flops/atom
• 5.5x speedup on Mira/BGQ!!

• Old Algorithm: Dominated by neighbor loop 

O(J^5) x Neighs

O(J^3) x Neighs

Old

New

~X^7/3

Old

New
~X^7/3

Mira/BGQ
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Y-array trick in TestSNAP

 New version can now fit in the memory for large problem size

 Exposed parallelism initially via

1. OpenACC

2. Cuda (to expose higher degree of parallelism with multi dimensional grid 

generation)

3. Kokkos (Moved to a kokkos implementation to be consistent with the 

LAMMPS implementation)
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Apply smaller problem optimizations on 
bigger problem size

• With the Y-array trick, 2J14 

could now be fit in the GPU 

memory

• We applied the 2J8 tricks to 

the FOM (2J14) benchmark

• Initially parallelized over atom 

loops
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problem
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Collapse atom and neighbor loops

• Distribute the works across 

atom and neighbor loops

• The memory-footprint was 

now reduced to 12GB
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Row major vs Column Major

Core 0

Core 1

Core N

.

.

.

Cache

tr 0

tr 1

Avoid false sharing in cache && 
improve cache utilization

Promote memory 
coalescing 

tr N

Row major

 Memory access patterns
 Row major - C style access, optimal for CPUs 
 Column Major – FORTRAN style access, optimal for 

GPUs
 Gave a 2X performance improvement

Column major
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Column major data access pattern

• Accessing the data in a column 

major fashion gave us a ~2X 

performance boost
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Reverse the loop order
for neighbor j {

for atom i {
…

}
}

• Reverse the loops to make 

atom index as the fastest 

moving index

• Gave a 2x performance 
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Fastest index is the atom index
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Row major access for one of the data 
structures

• Increased runtime of kernel 

with atomics by 10%

• Improved runtime of another 

kernel by 25%

• Overall gave a 15% 

improvement
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TestSNAP was ~7.5x faster than Baseline 
LAMMPS implementation of SNAP

Status at the end of the July 2019 
hackathon
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July2019 Hackathon

 Integrated several optimizations from TestSNAP into the Kokkos module in 
LAMMPS
 Broke up kernels: actually made the code significantly slower at first (could be due 

to suboptimal memory layout)

 Requires storing intermediate results between kernels for atom/neighbor pairs 
(extreme memory overhead that requires chunking up the loops)

 Column major

 Loop reorder: led to significant speedup, but not possible without breaking up the 
kernels

 Removed advanced Kokkos features: used flat parallelism instead of hierarchical 
and no shared scratchpad memory

 New performance on Summit: 175.1 Katom-steps/s/node * 4608 Summit 
nodes: projected 90x faster than Mira baseline (5.2x speedup)
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post July2019 Hackathon

 Integrated more optimizations from TestSNAP into the Kokkos module in 
LAMMPS

 Refactored loop indices data structures to use complex numbers and be muti-
dimensional arrays instead of arrays of structs

 Replaced more hierarchal parallelism with flat parallelism and exposed additional 
parallelism by collapsing loops

 Changed data layout between kernels via transpose

 Current master LAMMPS on Summit: 262.0 Katom-steps/s/node * 4608 Summit 
nodes: projected 134x faster than Mira baseline (7.7x speedup)
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post July2019 Hackathon (TestSNAP)

 Implemented a transpose routine for U-array to take advantage of column 
major updates for kernels with atomics and row major updates for other 
kernels

 Used double2 vector type from CUDA to optimize on 128 bit load/stores

 Improved the algorithm and reduced the memory footprint to 3.5GBs

 > 2x speedup in TestSNAP since July 2019 hackathon

29



Looking Forward

 Evan Weinberg (NVIDIA) has added additional optimizations to Kokkos SNAP in 
LAMMPS:

 refactoring algorithms to avoid thread atomics

 use of Kokkos hierarchal parallelism and scratch memory

 New version being tested by CoPA and EXAALT project members

 Not yet released, but should be merged into master LAMMPS soon

 Unreleased LAMMPS on Summit: 407.7 Katom-steps/s/node * 4608 Summit 
nodes: projected 210x faster than Mira baseline (12x speedup)

 And we are not done yet!
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Lessons Learned

 Performance gains came from both algorithmic improvements (i.e. changes to 
the serial code) and implementation improvements targeting specific 
hardware (i.e. changes to the CUDA/Kokkos code)

 Small proxy app with correctness check is invaluable, allows rapid prototyping

 Profiling helps to know where to focus next

 Pay attention to memory access on GPUs
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Supplementary Material
Source Code

TestSNAP: https://gitlab.com/NESAP/EXAALT/q1-2019-hack-a-thon

LAMMPS: https://github.com/lammps/lammps/tree/master/src/SNAP

FitSNAP: https://github.com/FitSNAP/FitSNAP
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Reports

"Episode 44: ECP Team Reengineers Materials Simulation Code, Achieves Atypical Performance Increase", ECP 
Highlight, September 2019, http://exascaleproject.org, https://soundcloud.com/exascale-computing-
project/episode-44-ecp-team-reengineers-materials-simulation-code-achieves-atypical-performance-increase

ECP CoPA Milestone Report, "Deploy ExaMiniMD optimizations into LAMMPS, Stan Moore, Christian Trott, Steve 
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