
Refactoring EXAALT MD for
Emerging Architecture

Aidan Thompson, Stan Moore

Sandia National Laboratories

Rahul Gayatri

NERSC, Lawrence Berkeley National Laboratory

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. 1

Connections between CoPA & EXAALT & LAMMPS

 ECP EXAALT project seeks to extend accuracy, length, and time scales of material
science simulations for fission/fusion reactors using LAMMPS MD

 EXAALT wants to run millions of small MD replicas (1K to 1M atoms) via ParSplice
as fast as possible (not one large simulation with billions of atoms)

 Primary KPP target is MD of nuclear fusion materials that uses the SNAP
interatomic potential in LAMMPS

 Performance directly depends on single-node performance for SNAP

 ECP CoPA codesign project targeting MD as one of its "sub-motifs"

2

Summary of EXAALT KPP Improvements

LAMMPS/Kokkos SNAP GPU FOM Improvements
(Summit Full-Machine)

Aurora/Frontier
Target FOM (50x)

http://exascaleproject.org
"Episode 44: ECP Team
Reengineers Materials
Simulation Code, Achieves
Atypical Performance Increase"

Baseline GPU code by
Christian Trott and Stan
Moore

3

http://exascaleproject.org/

EXAALT Performance Improvements

 Joint effort by Aidan Thompson (EXAALT), Stan Moore (CoPA), Rahul Gayatri (NESAP), Sarah Anderson

(Cray), Evan Weinberg (NVIDIA)

 Created stripped-down proxy code (TestSNAP)

 Completely rewrote TestSNAP to reduce flops and memory

 Explored many different GPU strategies, using OpenACC and CUDA

 Ported best implementation back to production code with Kokkos

 Other kernels required for ParSplice (time stepping, minimization) also implemented on accelerators

 These kernels account for essentially all of the flops in base challenge

4

o ML interatomic potential (IAP) have three critical parts:

• Descriptors of the local environment

• Energy and force functions expressed in the descriptors

• Training(regression method) on large amount of ‘ground

truth’ energies and forces

o Demonstrated ab initio accuracy in classical MD!

Training
Data

FitSNAP

Chemistry Application # Configs Year

Ta Plasticity 363 2014

In,P Intrinsic Defects 665 2015

W,He Fusion Energy 2,800 2017

W,Be Fusion Energy 25,000 2018

Actinides Shock Physics 20,000 2018

W,H Fusion Energy 40,000 2019

C Shock Physics 10,000 2019

HEA Add. Manufact. >20,000 2019

W,N Fusion Energy 35,000 2019

SNAP: Spectral Neighbor Analysis Potential

5

SNAP: Spectral Neighbor Analysis Potential

6

Geometric
descriptors
of atomic

environments

Energy as a
function of
geometric
descriptors

• GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., Phys. Rev. Lett, 2010. Uses 3D neighbor density

bispectrum and Gaussian process regression

• SNAP (Spectral Neighbor Analysis Potential): Our SNAP approach uses GAP’s neighbor bispectrum, but replaces

Gaussian process with linear regression.

- More robust

- Lower computational cost (training and predicting)

- Decouples MD speed from training set size

- Enables large training data sets, more bispectrum coefficients

- Straightforward sensitivity analysis

- Fast

SNAP Bispectrum Components
 Neighbors of each atom are mapped onto unit sphere in 4D

3𝐷𝐷 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵: 𝑟𝑟, 𝜃𝜃,𝜙𝜙 , 𝑟𝑟 < 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 ⟹ 4𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆: (𝜃𝜃0, 𝜃𝜃,𝜙𝜙),𝜃𝜃0 =
𝑟𝑟

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐
𝜋𝜋

 Expand density around each atom in a basis of 4D hyperspherical harmonics,

 Bispectrum components of the 4D hyperspherical harmonic expansion are used as the

geometric descriptors of the local environment

• Preserves universal physical symmetries

• Rotation, translation, permutation

• Size-consistent (extensible)

7

SNAP Force Calculation

• Deeply nested loops

• Loop structure not regular

• Loop sizes <= 14

8

Original Kokkos Version of SNAP

 Christian Trott (SNL) created the original Kokkos

version in the ExaMiniMD proxy app

 Used advanced Kokkos features: three levels of

hierarchical parallelism and shared scratchpad

memory (global)

 Very memory compact

 Stan Moore (SNL) ported this version to the

LAMMPS KOKKOS package

 Not clear of the possible improvements, if any…

9

SNAP Performance before Jan2019
Hackathon

10

SNAP Benchmarking on Summit

 EXAALT FOM benchmark uses 205 bispectrum coefficients, tungsten crystal

 Mira (IBM BG/Q) FOM baseline: 0.182 Katoms-steps/s/node * 49152 Mira nodes

 On Summit, run 6 GPU + 1 CPU (36 cores) replicates per node

 2018 LAMMPS performance on Summit: 33.7 Katom-steps/s/node * 4608 Summit

nodes: projected 17.4x faster than Mira baseline

11

KPP: Challenges
 SNAP fraction-of-peak performance has been steadily

declining on most hardware

 Recommendation from 2018 EXAALT review was to focus

on SNAP GPU performance

 Developed a collaboration between EXAALT, CoPA, and

NERSC/NESAP in order to address this risk

Architecture Year Normalized
fraction of
peak

Intel
SandyBridge/Chama

2012 1.0

IBM PowerPC/Mira 2012 0.23

AMD CPU/Titan 2013 0.71

NVIDIA K20X/Titan 2013 0.037

Intel Haswell/Trinity 2016 0.47

Intel KNL/Trinity 2016 0.080

NVIDIA P100/SNL
testbed

2016 0.077

Intel Broadwell/Serrano 2017 0.39

NVIDIA V100/SNL
testbed

2018 0.093

Benchmarks for 2000 SNAP atoms

12

TestSNAP – standalone independent SNAP
module

 Standalone SNAP kernel mini app derived from CPU version (90% similar)

 Proxy in memory and computation

 Included correctness check

 Blank slate to try something new without biases

 Initial OpenACC port very slow

13

Kernel refactor

for atom i {
for neighbor j {

function_1()
function_2()
…

}
}

for atom i {
for neighbor j {

function_1()
}

}

for atom i {
for neighbor j {

function_2()
}

}
…

• Broke one large kernel into many
smaller kernels, helps reduce register
pressure

• Reordered loop structure

• Works because kernel launch latency
negligible compared to kernel execution
time

• Atypical: usually need to fuse kernels
instead

• Greatly increases memory footprint,
must store intermediate results

14

During Jan~2019 hackathon

• Break up the compute kernels

• Store atom specific information across

kernels

• Increases memory footprint

• Distribute the atom specific work in each

kernel over the threadblocks and threads

of a threadblock

15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Baseline TestSNAP

Refactor Kernels

(Results for V100 GPU)

Parallelize over atoms and neighbors

Could only fit the smaller
problem size in the GPU
memory (16GBs)

0

0.2

0.4

0.6

0.8

1

1.2

Baseline TestSNAP

Parallelize over atoms and neighbors

16

Post Jan-2019 hackathon

 Nick Lubbers (EXAALT, LANL) suggested re-arranging the order of summation

(Y-array trick)

 Memory footprint was reduced by 20x by compacting multi-dimensional arrays

in to simple lists

 Y-array trick was first applied to the sequential memory and merged into

Kokkos-LAMMPS in June 2019

 Allowed the FOM 2J14 benchmark into the memory

17

Y-array Trick

• New algorithm: Pre-compute Y factors
outside neighbor loop

• Cost of neighbor loop is now negligible
• Dominated by Y pre-compute O(J^7)
• 2x reduction in Flops/atom
• 5.5x speedup on Mira/BGQ!!

• Old Algorithm: Dominated by neighbor loop

O(J^5) x Neighs

O(J^3) x Neighs

Old

New

~X^7/3

Old

New
~X^7/3

Mira/BGQ

18

Y-array trick in TestSNAP

 New version can now fit in the memory for large problem size

 Exposed parallelism initially via

1. OpenACC

2. Cuda (to expose higher degree of parallelism with multi dimensional grid

generation)

3. Kokkos (Moved to a kokkos implementation to be consistent with the

LAMMPS implementation)

19

Apply smaller problem optimizations on
bigger problem size

• With the Y-array trick, 2J14

could now be fit in the GPU

memory

• We applied the 2J8 tricks to

the FOM (2J14) benchmark

• Initially parallelized over atom

loops

0

0.2

0.4

0.6

0.8

1

1.2

Baseline TestSNAP

Breakup kernels across atom dimensions for FOM
problem

20

Collapse atom and neighbor loops

• Distribute the works across

atom and neighbor loops

• The memory-footprint was

now reduced to 12GB

0

0.2

0.4

0.6

0.8

1

1.2

Baseline TestSNAP

Collapse atom and neighbor loops

21

Row major vs Column Major

Core 0

Core 1

Core N

.

.

.

Cache

tr 0

tr 1

Avoid false sharing in cache &&
improve cache utilization

Promote memory
coalescing

tr N

Row major

 Memory access patterns
 Row major - C style access, optimal for CPUs
 Column Major – FORTRAN style access, optimal for

GPUs
 Gave a 2X performance improvement

Column major

22

Column major data access pattern

• Accessing the data in a column

major fashion gave us a ~2X

performance boost

0

0.2

0.4

0.6

0.8

1

1.2

Baseline TestSNAP

Store the data in column major format

23

Reverse the loop order
for neighbor j {

for atom i {
…

}
}

• Reverse the loops to make

atom index as the fastest

moving index

• Gave a 2x performance

boost0

0.2

0.4

0.6

0.8

1

1.2

Baseline TestSNAP

Fastest index is the atom index

24

Row major access for one of the data
structures

• Increased runtime of kernel

with atomics by 10%

• Improved runtime of another

kernel by 25%

• Overall gave a 15%

improvement

25

0

0.2

0.4

0.6

0.8

1

1.2

Baseline TestSNAP

U-array as row major

TestSNAP was ~7.5x faster than Baseline
LAMMPS implementation of SNAP

Status at the end of the July 2019
hackathon

26

0

0.2

0.4

0.6

0.8

1

1.2

Baseline TestSNAP

July2019 Hackathon

 Integrated several optimizations from TestSNAP into the Kokkos module in
LAMMPS
 Broke up kernels: actually made the code significantly slower at first (could be due

to suboptimal memory layout)

 Requires storing intermediate results between kernels for atom/neighbor pairs
(extreme memory overhead that requires chunking up the loops)

 Column major

 Loop reorder: led to significant speedup, but not possible without breaking up the
kernels

 Removed advanced Kokkos features: used flat parallelism instead of hierarchical
and no shared scratchpad memory

 New performance on Summit: 175.1 Katom-steps/s/node * 4608 Summit
nodes: projected 90x faster than Mira baseline (5.2x speedup)

27

post July2019 Hackathon

 Integrated more optimizations from TestSNAP into the Kokkos module in
LAMMPS

 Refactored loop indices data structures to use complex numbers and be muti-
dimensional arrays instead of arrays of structs

 Replaced more hierarchal parallelism with flat parallelism and exposed additional
parallelism by collapsing loops

 Changed data layout between kernels via transpose

 Current master LAMMPS on Summit: 262.0 Katom-steps/s/node * 4608 Summit
nodes: projected 134x faster than Mira baseline (7.7x speedup)

28

post July2019 Hackathon (TestSNAP)

 Implemented a transpose routine for U-array to take advantage of column
major updates for kernels with atomics and row major updates for other
kernels

 Used double2 vector type from CUDA to optimize on 128 bit load/stores

 Improved the algorithm and reduced the memory footprint to 3.5GBs

 > 2x speedup in TestSNAP since July 2019 hackathon

29

Looking Forward

 Evan Weinberg (NVIDIA) has added additional optimizations to Kokkos SNAP in
LAMMPS:

 refactoring algorithms to avoid thread atomics

 use of Kokkos hierarchal parallelism and scratch memory

 New version being tested by CoPA and EXAALT project members

 Not yet released, but should be merged into master LAMMPS soon

 Unreleased LAMMPS on Summit: 407.7 Katom-steps/s/node * 4608 Summit
nodes: projected 210x faster than Mira baseline (12x speedup)

 And we are not done yet!

30

Lessons Learned

 Performance gains came from both algorithmic improvements (i.e. changes to
the serial code) and implementation improvements targeting specific
hardware (i.e. changes to the CUDA/Kokkos code)

 Small proxy app with correctness check is invaluable, allows rapid prototyping

 Profiling helps to know where to focus next

 Pay attention to memory access on GPUs

31

Supplementary Material
Source Code

TestSNAP: https://gitlab.com/NESAP/EXAALT/q1-2019-hack-a-thon

LAMMPS: https://github.com/lammps/lammps/tree/master/src/SNAP

FitSNAP: https://github.com/FitSNAP/FitSNAP

Papers

C.R. Trott, S.D. Hammond, A. P. Thompson, "SNAP: Strong scaling high fidelity molecular dynamics simulations on
leadership-class computing platforms," Supercomputing, (Lecture Notes in Computer Science), 8488 19 (2014).

A. P. Thompson , L.P. Swiler, C.R. Trott, S.M. Foiles, and G.J. Tucker, "Spectral neighbor analysis method for
automated generation of quantum-accurate interatomic potentials," J. Comp. Phys., 285 316 (2015).

M. A. Wood, and A. P. Thompson, "Extending the accuracy of the SNAP interatomic potential form," J. Chem.
Phys., 148 241721 (2018).

M. A. Wood, M. A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 184305 (2019)

Reports

"Episode 44: ECP Team Reengineers Materials Simulation Code, Achieves Atypical Performance Increase", ECP
Highlight, September 2019, http://exascaleproject.org, https://soundcloud.com/exascale-computing-
project/episode-44-ecp-team-reengineers-materials-simulation-code-achieves-atypical-performance-increase

ECP CoPA Milestone Report, "Deploy ExaMiniMD optimizations into LAMMPS, Stan Moore, Christian Trott, Steve
Plimpton, June (2018)

https://gitlab.com/NESAP/EXAALT/q1-2019-hack-a-thon
https://github.com/lammps/lammps/tree/master/src/SNAP
https://github.com/FitSNAP/FitSNAP
http://exascaleproject.org/
https://soundcloud.com/exascale-computing-project/episode-44-ecp-team-reengineers-materials-simulation-code-achieves-atypical-performance-increase

	Refactoring EXAALT MD for Emerging Architecture
	Connections between CoPA & EXAALT & LAMMPS
	Summary of EXAALT KPP Improvements
	EXAALT Performance Improvements
	Slide Number 5
	SNAP: Spectral Neighbor Analysis Potential
	SNAP Bispectrum Components
	SNAP Force Calculation
	Original Kokkos Version of SNAP
	SNAP Performance before Jan2019 Hackathon
	SNAP Benchmarking on Summit
	KPP: Challenges
	TestSNAP – standalone independent SNAP module
	Kernel refactor
	During Jan~2019 hackathon
	Parallelize over atoms and neighbors
	Post Jan-2019 hackathon
	Y-array Trick
	Y-array trick in TestSNAP
	Apply smaller problem optimizations on bigger problem size
	Collapse atom and neighbor loops
	Row major vs Column Major
	Column major data access pattern
	Reverse the loop order
	Row major access for one of the data structures
	TestSNAP was ~7.5x faster than Baseline LAMMPS implementation of SNAP
	July2019 Hackathon
	post July2019 Hackathon
	post July2019 Hackathon (TestSNAP)
	Looking Forward
	Lessons Learned
	Supplementary Material

