
exascaleproject.org xsdk.info

Building Community through
xSDK Software Policies

Piotr Luszczek, University of Tennessee

Ulrike Meier Yang, Lawrence Livermore
National Laboratory

December 11, 2019

2 xSDK software policies webinar 2019-12-11

Who are we?

• Developers of high-quality, robust, portable high-performance math libraries

– Piotr Luszczek:

• Performance engineer and developer for multiple
numerical libraries and benchmarks

• Member of the xSDK4ECP project

– Ulrike Meier Yang

• More than 30 years of experience in numerical methods,
parallel algorithms, scientific software development

• PI of the xSDK4ECP project

• software developer for parallel linear solvers library

3 xSDK software policies webinar 2019-12-11

Why are we leading this webinar?

• Tell the story behind the xSDK software policies

• Explain how the use of xSDK community policies improves software quality,

sustainability, and combined use of independent packages,

as needed for extreme-scale computational science and engineering

• Dive deeper into the actual policies; how they are defined

• Talk about their impact on software packages and application codes

4 xSDK software policies webinar 2019-12-11

Who are you?

• Extreme-scale computational science community
– Developers of extreme-scale scientific applications

– Developers of high-performance software packages and tools

– Project leaders, stakeholders, program managers

– Others

Learning objectives:
• Understand

– Why are the software policies important

– What does it take to develop them

– What does it take to get code groups to accept and implement them

– What are they about

– Their impact

5 xSDK software policies webinar 2019-12-11

Webinar Outline:

• Introduction

• Motivation and History of xSDK and Community
Policies

• Deep Dive: Community Software Policies

• Impact/Summary

6 xSDK software policies webinar 2019-12-11

xSDK history

www.ideas-productivity.org

• Interoperable Design of Extreme-scale Application Software
– First-of-a-kind project: qualitatively new approach based on making

productivity and sustainability the explicit and primary principles for guiding our
decisions and efforts.

– ASCR/BER partnership began in Sept 2014 (Program Managers: Bayer, Lesmes
(BER), Ndousse-Fetter (ASCR))

• Motivation:
– Enable increased scientific productivity, realizing the potential of

extreme- scale computing, through a new interdisciplinary and agile
approach to the scientific software ecosystem.

• Objectives:
–Address confluence of trends in hardware and increasing demands for

predictive multiscale, multiphysics simulations.

–Respond to trend of continuous refactoring with efficient agile software
engineering methodologies and improved software design

7 xSDK software policies webinar 2019-12-11

xSDK history
• Impact on Applications & Programs:

–Terrestrial ecosystem use cases tie IDEAS to modeling and
simulation goals in two Science Focus Area (SFA) programs
and both Next Generation Ecosystem Experiment (NGEE)
programs in DOE Biologic and Environmental Research (BER).

• Approach
–ASCR/BER partnership ensures delivery of both crosscutting

methodologies and metrics with impact on real application and
programs.

– Interdisciplinary multi-lab team: (ANL, LANL, LBNL, LLNL,
ORNL, PNNL, SNL)

–ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman
McInnes (ANL), BER Lead: David Moulton (LANL)

– Integration and synergistic advances in three communities
deliver scientific productivity; outreach establishes a new holistic
perspective for the broader scientific community.

8 xSDK software policies webinar 2019-12-11

Software libraries facilitate progress in
computational science and engineering

• Software library: a high-quality,
encapsulated, documented, tested,
and multiuse software collection that
provides functionality commonly
needed by application developers

– Organized for the purpose of being reused
by independent (sub)programs

– User needs to know only

• Library interface (not internal details)

• When and how to use library functionality
appropriately

• Key advantages of software libraries

– Contain complexity

– Leverage library developer expertise

– Reduce application coding effort

– Encourage sharing of code, ease distribution
of code

• References:
• https://en.wikipedia.org/wiki/Library_(computing)

• What are Interoperable Software Libraries? Introducing
the xSDK

https://en.wikipedia.org/wiki/Library_(computing)
https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

9 xSDK software policies webinar 2019-12-11

Why is reusable scientific software important?

User perspective:

Focus on primary interests

• Reuse algorithms and data structures
developed by experts

• Customize and extend to exploit
application-specific knowledge

• Cope with complexity and changes
over time

Provider perspective:

Share your capabilities

• Broader impact of your work

• Motivate new directions of
research

• More efficient, robust, reliable, sustainable software

• Improve developer productivity

• Better science

Software
user

Software
provider

10 xSDK software policies webinar 2019-12-11

Software libraries are not enough

• Well-designed libraries provide critical functionality … But alone are

not sufficient to address all aspects of next-generation scientific

simulation and analysis.

• Applications need to use software packages in combination on ever

evolving architectures

“The way you get programmer productivity is

by eliminating lines of code you have to write.”

– Steve Jobs, Apple World Wide Developers Conference, Closing Keynote, 1997

http://www.youtube.com/watch?v=3LEXae1j6EY#t=41m26s

11 xSDK software policies webinar 2019-12-11

Need software ecosystem perspective

Ecosystem: A group of independent but interrelated elements
comprising a unified whole

Ecosystems are challenging!

“We often think that when we have completed

our study of one we know all about two,

because ‘two’ is ‘one and one.’ We forget that

we still have to make a study of ‘and.’ ”

− Sir Arthur Stanley Eddington (1892−1944), British astrophysicist

12 xSDK software policies webinar 2019-12-11

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Documentation content
• Source markup.
• Embedded examples.

Testing content
• Unit tests.
• Test fixtures.

Build content
• Rules.
• Parameters.

Library interfaces
• Parameter lists.
• Interface adapters.
• Function calls.

Shared data objects
• Meshes.
• Matrices, vectors.

Native code & data objects
• Single use code.
• Coordinated component use.
• Application specific.

Extreme-scale Science Applications

Domain component interfaces
• Data mediator interactions.
• Hierarchical organization.
• Multiscale/multiphysics coupling.

Extreme-scale

Scientific

Software

Ecosystem

13 xSDK software policies webinar 2019-12-11

Difficulties in combined use of independently
developed software packages

Challenges:

• Obtaining, configuring, and installing multiple
independent software packages is tedious and error
prone.

– Need consistency of compiler (+version, options),
3rd-party packages, etc.

• Namespace conflicts

• Incompatible versioning

• And even more challenges for deeper levels of
interoperability

Levels of package

interoperability:
• Interoperability level 1

• Both packages can be used

(side by side) in an application

• Interoperability level 2

• The libraries can exchange

data (or control data) with

each other

• Interoperability level 3

• Each library can call the other

library to perform unique

computations

Ref: What are Interoperable Software Libraries? Introducing the xSDK

https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

14 xSDK software policies webinar 2019-12-11

Motivation and history of xSDK

Next-generation scientific simulations
require combined use of independent
packages

• Installing multiple independent software
packages is tedious and error prone

– Need consistency of compiler (+version,
options), 3rd-party packages, etc.

– Namespace and version conflicts make
simultaneous build/link of packages difficult

• Multilayer interoperability among packages
requires careful design and sustainable
coordination

• Prior to xSDK effort, could not build
required libraries into a single

xSDK history: Work began in ASCR/BER
partnership, IDEAS project (Sept 2014)

Needed for BER multiscale, multiphysics
integrated surface-subsurface hydrology models

Program Managers:
Thomas Ndousse-Fetter (ASCR)

Paul Bayer & David Lesmes (BER)

executable due to many incompatibilities

15 xSDK software policies webinar 2019-12-11

How can you avoid the pitfalls mentioned?

• Ask application developers for feedback on most
important issues

• Have brain storming sessions with experienced
software developers to gather ideas

• Collect the input

• Formulate a set of rules that can help avoid these issues

• → xSDK standards

• What next?

16 xSDK software policies webinar 2019-12-11

How do you get buy-in from the software
community?

• Communicate set of rules in various venues: meetings, papers, etc

• Use the right vocabulary!

– Initially we suggested `compliance to xSDK library standards’

• Minimum compliance requirements

• Recommended compliance

– New formulation:

• `Standards/ requirements’ replaced by `community policies’

• `Compliance’ replaced by `compatibility’

• Provide opportunity to give input

17 xSDK software policies webinar 2019-12-11

How do you make sure policies will stick
around?

• Continue to ask for
input from the community

• Make updates as software practices are changing

– Regular xSDK community policies releases

• Provide a process that allows change

– Pull requests on github to change or add policies

https://github.com/xsdk-project/xsdk-community-policies

https://github.com/xsdk-project/xsdk-community-policies

18 xSDK software policies webinar 2019-12-11

SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, April 2016

Tested on key machines at ALCF,

NERSC, OLCF, also Linux, Mac OS X

xSDK History: Version 0.1.0: April 2016

Multiphysics Application C

Application B

April 2016
• 4 math libraries
• 1 domain

component
• PETSc-based

xSDK installer
• 14 mandatory

(5 rec.) xSDK
community
policies

Notation: A B:

A can use B to provide

functionality on behalf of A

https://xsdk.info

HDF5

BLAS

More
external
software

Application A

Alquimia
hypre

Trilinos

PETSc

SuperLU

More

contributed

librariesMore

domain

components

xSDK

Installer

19 xSDK software policies webinar 2019-12-11

SW engineering
• Productivity tools.

• Models, processes.

Libraries
• Solvers, etc.

• Interoperable.

Frameworks & tools
• Doc generators.

• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.

• Reusable.

xSDK functionality, Nov 2019

Tested on key machines at ALCF,

NERSC, OLCF, also Linux, Mac OS X

xSDK History: Version 0.5.0: November 2019

Multiphysics Application C

Application B

Impact: Improved code quality,
usability, access, sustainability

Foundation for work on
performance portability, deeper

levels of package interoperability

Each xSDK member package uses or

can be used with one or more xSDK

packages, and the connecting interface

is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU
More

libraries

PFLOTRAN

More domain

components

MFEM

SUNDIALS

HDF5

BLAS

More
external
software

STRUMPACK

SLEPc AMReX

PUMI

Omega_h

DTK
Tasmanian

PHIST

deal.II

PLASMA

November 2019
• 21 math libraries
• 2 domain

components
• 16 mandatory (7

rec) xSDK
community
policies

• Spack xSDK
installer

MAGMA preCICE

ButterflyPack

Gingko

libEnsemble

20 xSDK software policies webinar 2019-12-11

xSDK Dependency Graph

21 xSDK software policies webinar 2019-12-11

Questions?

22 xSDK software policies webinar 2019-12-11

Deep Dive:
Community Software

Policies

https://bluefieldhighschool.files.wordpress.com/2014/03/community-care-pod-image.png

23 xSDK software policies webinar 2019-12-11

M1: Support Autoconf or CMake Options
• The configuration options are meant make xSDK packages compatible during

installation

• The options are described in the xSDK Community Installation Policies

– https://github.com/xsdk-project/installation_policies/README.md

• The use of Autoconf or CMake is optional

– For example, PETSc uses Python for configuration

– Makefile-only builds are not allowed

• PLASMA introduced CMake-based configuration and build for compatibility with xSDK

• SuperLU transitioned from manually editing “make.inc” to CMake/Ctest for increased productivity and
robustness

– Management of dependencies became easier (turn ParMetis on/off, inclusion of machine-dependent files)

– Platform-specific versions were introduced (MT = multi-threaded, DIST = distributed, GPU)

– SUNDIALS had to re-align the configuration options to be compatible with xSDK

• Some duplication was introduced so that the redundant options would keep compatibility for existing users

https://en.wikipedia.org/wiki/CMake
https://upload.wikimedia.org/wikipedia/en/thumb/2/22/Heckert_GNU_white.svg/100px-Heckert_GNU_white.svg.png

24 xSDK software policies webinar 2019-12-11

xSDK Installation Policies

1. --dis/enable-xsdk-defaults
USE_XSDK_DEFAULTS=[YES,NO]

2. --prefix=path
CMAKE_INSTALL_PREFIX=path

3. CC=cc CXX=cxx FC=fc CPP FFLAGS
FCFLAGS CFLAGS CXXFLAGS
CPPFLAGS LDFLAGS
CMAKE_C_COMPILER=cc

4. --dis/enable-debug
CMAKE_BUILD_TYPE=[Debug,Release
]

5. --dis/enable-shared
BUILD_SHARED_LIBS=[YES,NO]

6. --dis/enable-<language>
XSDK_ENABLE_<language>=[YES,NO]

7. --with-precision=[single,double,quad]

8. --with-index-size=[32,64]

9. --with-blas-lib=-lblas --with-lapack-lib=...

10. --with-<package> --with-<package>-lib=.
–with-<package>-include=.

11. In xSDK mode, do not rely on env.
variables such as LD_LIBRARY_PATH

12. Compile, install, “smoke” test with
“make”, “[sudo] make install”, “make
test_install”

13. After install, provide machine-readable
provenance

25 xSDK software policies webinar 2019-12-11

M2: Provide Comprehensive Test Suite
• The test suite cannot require commercial software

• Significant portion of the test suite should:

– Complete on a workstation within a few hours.

– Be suitable for running in batch-only environment.

• There are differences in test suite coverage between xSDK packages

– For deal.II, there are many interfaces to other libraries that are verified by the test suite

– hypre introduced a new test suite to check for errors on any platform

– MFEM tests for versioning of dependent libraries to verify interoperability

– PETSc/TAO introduced new features and parallelism to their test suite for more robust and
scalable testing

– SuperLU introduced a comprehensive regression suite of unit tests

• Compatibility with Travis CI allowed to use an integration pipeline that includes every git commit

– Trilinos now has a more regular testing that includes its interfaces to hypre and PETSc

• Documentation received a refresh as well

https://udemy-images.udemy.com/course/480x270/1471506_c097_2.jpg

26 xSDK software policies webinar 2019-12-11

M3: No Direct Use of MPI_COMM_WORLD

• Only user-provided communicator should be used for communication

• It’s OK to provide a sequential version (no MPI required)

– But not with a dummy (single rank) implementation because there would be a clash of
symbols if multiple packages do it

– Compatibility with other packages that use MPI is not required if sequential version is installed

• Some packages in xSDK were designed with communicators in mind while
others had to adjust to accommodate policy M3

27 xSDK software policies webinar 2019-12-11

M4: Be Portable

• Support common platforms

– xSDK is regularly tested on macOS and variants of Linux

– Machines at major DOE sites are also used for testing

• Support common compiler toolchains

– LLVM Clang, GNU C/C++/gfortran

• Support vendor toolchains

– Sometimes necessary for integration with low-level hardware features

• Some xSDK packages had to adjust their building process to accommodate the
portability

– PHIST did away with some platform/toolchain specific settings (OpenMP or -march) to
decouple from a particular compiler

https://www.golem.de/1510/sp_116890-107727-i_rc.jpg
http://www.psychocats.net/ubuntucat/wp-content/uploads/tux2.png

28 xSDK software policies webinar 2019-12-11

M5: Provide Reliable Contact Information

• Web form or email are required

– Joining mailing lists is not enough
because they lack focus

• Users care for their own bugs
only, not all the other bugs that
usually are sent to the bug
reporting mailing lists by the
entire users’ community

.

http://icons.iconarchive.com/icons/fasticon/connecting/512/email-icon.png

29 xSDK software policies webinar 2019-12-11

M6: Respect System Resources and Settings

• For example: the handling mode for
floating-point exception

– It’s OK to change the error handling
mode, but only if allowed by the
user through, for example, an API
call

• If changing system settings: save the
original state and resort it upon exit

• If saving state is not possible, provide
the user ability to prohibit state change

.

http://files.softicons.com/download/system-icons/normal-icons-by-robsonbillponte/png/512x512/Settings%20Folder.png

30 xSDK software policies webinar 2019-12-11

M7: Use Permissive Open-Source License

• Permissive licenses include MIT and 3-clause BSD.

• Strong copyleft licenses (e.g. GPL) are not compatible.

• Weak copyleft licenses (e.g. LGPL or GPLv2 with runtime exception) are
accepted, (but inclusion of such packages could be optional in the future)

• Restricting commercial use is not allowed (industry doesn’t like weak copyleft.)

• Some of the xSDK packages, such as Trilinos, include custom versions of
external packages that might be licensed under a different license than the main
source code.

https://cdn.elearningindustry.com/wp-content/uploads/2016/04/why-software-licensing-must-consider-the-needs-of-the-end-user.jpg

31 xSDK software policies webinar 2019-12-11

M8: Make Version Information Available at
Runtime

• For regular releases, full version information should be available through an API
call

• For in-development builds, the version can be identified by a commit ID

• The options used to configure and build the package should also be provided

• Note:

– It is hard to track versions of all dependent packages and it is not required which may prevent
rebuilding the package in the same state

• See Spack concretization for how to track the entire dependence tree of packages

32 xSDK software policies webinar 2019-12-11

M9: Use a Namespace for Externally Visible
Artifacts

• A package-specific namespace has to be provided for:
– Macros, symbols, library names, and header files

• For example, a matrix class from different xSDK packages could clash so they should be in a

namespace:
– hypre_matrix, magma::matrix, petsc_matrix, plasma_matrix, sundials_matrix,

trilinos::matrix

• Don’t forget to prefix configuration options:
– For example HAS_LONG_LONG should be PLASMA_HAS_LONG_LONG if it gets included in the installed

PLASMA headers

• Introducing a namespace for necessary for some xSDK packages
– Simple macros were unprefixed in deal.II
– Many functions needed hypre_ prefix

– PLASMA had a library called Core Blas that needed PLASMA_ prefix

– When SUNDIALS introduced compatible API for time integrators and nonlinear solvers, MFEM interfaces to

SUNDIALS had to be updated

– New namespaces in SuperLU allowed simultaneous use of the three library versions (serial, multithreaded,

and distributed) both internally and externally

33 xSDK software policies webinar 2019-12-11

M10: Use Version Control for Development

• The repo does not have to be public but must be accessible by the xSDK team

• We recommend support for pull requests

– xSDK uses them heavily for development and collaboration

– Other developers will likely use them as well

• Majority of xSDK packages use Git, some use Mercurial

– SuperLU transitioned from SVN to Git

• This enabled distributed development, bug fixing, and external contributions:

– Windows and static/shared libraries’ builds contributed by external developers

– MAGMA and PLASMA will be transitioning from Bitbucket to Git

• Due the recent sunsetting notice of Mercurial VCS by Atlassian’s Bitbucket

https://intland.com/wp-content/uploads/2015/01/Git-vs.-Mercurial-Intland-Software.png

34 xSDK software policies webinar 2019-12-11

M11: No “Hardwired” print() or other I/O

• Any print() or I/O must have an option to be disabled by the user

– This must be done in programmatic way

• Environment variables cannot be changed at a reliable order in simulations involving complex
dependencies

• Allow the output to be redirected by the user

– Default file descriptors such as stdout or stderr might not be reliable at scale

• If the package prints by default then the output should be limited to a single
process, e.g., rank 0.

• Print-statement debugging is common and considered indispensable by some
developers but removing them is necessary for compatibility

– In hypre, new reporting level was introduced to ensure that there is no I/O by default

– In PUMI, over 700 calls to *printf() or iostream had to be dealt with (wrappers, redirection)

35 xSDK software policies webinar 2019-12-11

M12: Allow Use of External Dependencies

• If your packages includes pieces of other software then you must allow to link
against the system-provided copy

– The included software is the one that is externally developed

• There are several ways to enable the use of the external software

– Disable the included version during the build

– Confine the included version to a new namespace

• There are many examples of including external software

– Subset of BLAS and LAPACK is often included if only their limited functionality is required

– Trilinos included early versions of boost::any and SparseSuite but they were kept with
changed file names and a new namespace

• Some xSDK packages have hardwired external dependencies

– For example, MAGMA requires hardware accelerator API such as CUDA, HIP, or SYCL

36 xSDK software policies webinar 2019-12-11

M13: Use <prefix> for Installation

• The package must follow the configuration process
that uses --prefix option to specify the
destination for where the headers and libraries
should be installed

– Headers go to <prefix>/include

– Libraries go to <prefix>/lib or
<prefix>/lib64 depending on the system

• The version numbers should not be embedded in
filenames of headers or libraries

– Exception: sonames and the links:

• <prefix>/lib/lib<package>.so

<prefix>/lib/lib<package>.so.X

<prefix>/lib/lib<package>.so.X.Y.Z

36

http://www.easysolutionweb.com/wp-content/uploads/2018/01/relative-path.png

37 xSDK software policies webinar 2019-12-11

M14: 64-bit Pointers by Default

• Packages should build by default with 64-bit pointers

• 32-bit pointers are optional

https://www.free64bit.com/wp-content/uploads/sites/2/2017/06/32bit-vs-64bit.png

38 xSDK software policies webinar 2019-12-11

M15: Compatibility with the Policies is Sustainable

The package cannot have one branch in the repo for non-compatible
versions and another branch for the compatible ones

Maintaining the compatibility should be part of the standard release
process for all the packages

In other words: occasional fixes
are insufficient

Trilinos added continual maintenance of
documentation, interfaces to external
packages, and regular testing

39 xSDK software policies webinar 2019-12-11

M16: Production-Quality Installation Process

• The package should be compatible with the installation tool
of xSDK

– Since xSDK 0.2.0-alpha (released in April 2017), xSDK
installs with Spack

39

40 xSDK software policies webinar 2019-12-11

R1: Make Public Source Code Repository

• Public repositories encourage collaborative development

• Pull requests further facilitate user feedback through improvements and bug fixes

http://www.mattmakai.com/source/static/img/presentations/2014-full-stack-python/mercurial-logo.png
http://siliconangle.com/files/2013/05/git-logo.jpg
https://gigaom.com/wp-content/uploads/sites/1/2009/02/subversion_logo-384x332.png?w=300

41 xSDK software policies webinar 2019-12-11

R2: Use Debugging Tools for Running the
Test Suite

• One example is Valgrind that could check for memory corruption

– The price is a slowdown in execution and may not be suitable for a frequent use

http://mattdturner.com/wordpress/wp-content/uploads/2011/04/valgrind.png

42 xSDK software policies webinar 2019-12-11

R3: Make Error Reporting Consistent and Configurable

Packages should establish a policy for error conditions
Returning error codes

Propagating exceptions

It should be possible to change this behavior through
an API call

For production use: return error codes

For debugging: abort upon error

It is prohibited to call abort(), exit(), or MPI_Abort() unconditionally

No unconditional printing during error handling

The errors should be documents as
Recoverable

Causing resource loss

Leaving the process in undefined behavior

The calling code will decide what to do with each class of errors

43 xSDK software policies webinar 2019-12-11

R4: Release System Resources ASAP

System resources should be as soon
as they are not needed, including

Closing open files

Freeing heap memory

Freeing MPI communicators, data types

This will ensure no gradual exhaustion of resources for long or large-scale runs

Any resource that has to be released by the user must be clearly documented

Valgrind is useful for finding memory leaks (see R2)

44 xSDK software policies webinar 2019-12-11

R5: Export Ordered List of Library
Dependencies

• When a package includes a list of its library dependencies then every user
package will know to include them during linking

libCblas1.0

libMKL2019

libMath2020

libLapackVII

libOpenBlas19

libSolver20

45 xSDK software policies webinar 2019-12-11

R6: Document Versions of Suitable Dependencies

• This includes the software outside of
xSDK

• The documentation should be machine
readable for automatic verification

• This facilitates periodic releases of
xSDK

.

https://ekiy5aot90-flywheel.netdna-ssl.com/wp-content/uploads/2013/09/segue-blog-whyis-documentation-extremely-important-for-developers.png

46 xSDK software policies webinar 2019-12-11

R7: Provide Common Information Files in the Repo

• README or README.md

– Brief description, installation information, web page link

• LICENSE or LICENSE.md

– Full text of package licensing terms or a link to it

• SUPPORT or SUPPORT.md

– Contact information to get help (see M5)

• CHANGELOG or CHANGELOG.md

– Important changes over time or a link to the list of changes (no
need for every commit message)

• See online for more information

– https://github.com/kmindi/special-files-in-

repository-root/blob/master/README.md

.

https://alexdunndev.files.wordpress.com/2017/03/xamagonmarkdown.png?w=609&h=510&crop=1

47 xSDK software policies webinar 2019-12-11

Adding, Changing, Retiring Community Policies

• xSDK policies are updated regularly (but
don’t confuse them with software
releases)

• To maintain a community, its members
have to agree on the set of policies or any
changes over time

• xSDK team members seek input from the
larger community of users and arrive at
consensus (or majority) how to take the
feedback into account

• Recommended policies migrate to
become mandatory ones

• New policies arise due to changes in
hardware and software

47

Seek community input

Discuss feedback

Consensus vote

48 xSDK software policies webinar 2019-12-11

Compatibility with xSDK community policies

To help developers of packages
who are considering compatibility
with xSDK community policies, we
provide:

• Template with instructions to
record compatibility progress

• Examples of compatibility status
for xSDK packages

– Explain approaches used by other
packages to achieve compatibility
with xSDK policies

• Available at

https://github.com/xsdk-project/xsdk-policy-compatibility

https://github.com/xsdk-project/xsdk-policy-compatibility

49 xSDK software policies webinar 2019-12-11

Impact of xSDK Software Policies

• Improved code quality, and usability of individual libraries (or application codes)

• Addresses challenges in interoperability and sustainability of software developed
by diverse groups at different institutions

• Enables common build of libraries

• Foundation for work on deeper levels of interoperability and performance
portability

• Base for new sets of software policies

• Engages community

Think outside the box.It takes all kinds.

50 xSDK software policies webinar 2019-12-11

xSDK community policies
now also on github:
https://github.com/xsdk-project/xsdk-community-policies

xSDK compatible package:
Must satisfy mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called
packages.

M7. Come with an open source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name
space.

M10. Provide an accessible repository (not necessarily publicly available).

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external
software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64 bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. The package must support production-quality installation compatible with
the xSDK install tool and xSDK metapackage.

Also recommended policies, which currently are
encouraged but not required:

R1. Have a public repository.

R2. Possible to run test suite under valgrind in order to
test for memory corruption issues.

R3. Adopt and document consistent system for error
conditions/exceptions.

R4. Free all system resources it has acquired as soon
as they are no longer needed.

R5. Provide a mechanism to export ordered list of library
dependencies.

R6. Provide versions of dependencies.

R7. Have README, SUPPORT, LICENSE, and
CHANGELOG file in top directory.

xSDK member package: Must be an xSDK-
compatible package, and it uses or can be
used by another package in the xSDK, and
the connecting interface is regularly tested
for regressions.

We welcome feedback. What policies
make sense for your software?

https://xsdk.info/policies

https://github.com/xsdk-project/xsdk-community-policies
https://xsdk.info/policies

51 xSDK software policies webinar 2019-12-11

Acknowledgments
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced

Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

Some useful links
• http://xsdk.info/

• http://xsdk.info/policies/

• https://github.com/xsdk-project/xsdk-community-policies

• http://ideas-productivity.org/resources/howtos/

http://xsdk.info/
http://xsdk.info/policies/
https://github.com/xsdk-project/xsdk-community-policies
http://ideas-productivity.org/resources/howtos/

exascaleproject.org xsdk.info

Questions?

