
http://fpanalysistools.org/

Tools and Techniques for
Floating-Point Analysis

1

Ignacio Laguna
Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-PRES-788144).

IDEAS Webinar
Best Practices for HPC Software Developers Webinar Series

October 16, 2019

http://fpanalysistools.org/

What You will Learn

1. Some interesting areas of floating-point analysis in HPC

2. Potential issues when writing floating-point code

3. Some tools (and techniques) to help programmers

2

Focus on
high-performance computing

applications

http://fpanalysistools.org/

A Hard-To-Debug Case

3

clang –O1: |e| = 129941.1064990107
clang –O2: |e| = 129941.1064990107
clang –O3: |e| = 129941.1064990107

gcc –O1: |e| = 129941.1064990107
gcc –O2: |e| = 129941.1064990107
gcc –O3: |e| = 129941.1064990107

xlc –O1: |e| = 129941.1064990107
xlc –O2: |e| = 129941.1064990107
xlc –O3: |e| = 144174.9336610391

Hydrodynamics mini application

Early development and porting to new
system (IBM Power8, NVIDIA GPUs)

It took several weeks of effort and many methods to debug it

http://fpanalysistools.org/

IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008)

● Formats: how to represent floating-point data
● Special numbers: Infinite, NaN, subnormal
● Rounding rules: rules to be satisfied during rounding
● Arithmetic operations: e.g., trigonometric functions
● Exception handling: division by zero, overflow, etc.

4

http://fpanalysistools.org/

Do Programmers Understand IEEE Floating Point?

● Survey taken by 199 software developers
● Developers do little better than chance when quizzed about core

properties of floating-point, yet are confident

5

P. Dinda and C. Hetland, "Do Developers Understand IEEE Floating Point?," 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, 2018, pp. 589-598.

Some misunderstood aspects:

§ Standard-compliant optimizations (-O2 versus –O3)

§ Use of fused multiply-add (FMA) and flush-to-zero

§ Can fast-math result in non-standard-complaint behavior?

http://fpanalysistools.org/

Myth: It’s Just Floating-Point Error…Don’t Worry

6

Incorrect number
144174.9336

Floating-point precision

Compiler
(proprietary vs.
open-source)

Optimizations
(be careful with –O3)

Language semantics
(FP is underspecified in C)Architecture

(CPU != GPU)

Other factors

Many factors are involved

http://fpanalysistools.org/

What Floating-Point Code Can be Produce Variability?

7

VARITY tool
Random Test Compiler 1

Compiler 2

Run Result
3.1415

Result
3.1498Run

http://fpanalysistools.org/

Example 1:
How Optimizations Can Bite Programmers

8

void compute(double comp,int var_1,double var_2,
double var_3,double var_4,double var_5,double var_6,
double var_7,double var_8,double var_9,double var_10,
double var_11,double var_12,double var_13,
double var_14) {

double tmp_1 = +1.7948E-306;
comp = tmp_1 + +1.2280E305 - var_2 +

ceil((+1.0525E-307 - var_3 / var_4 / var_5));
for (int i=0; i < var_1; ++i) {

comp += (var_6 * (var_7 - var_8 - var_9));
}
if (comp > var_10 * var_11) {

comp = (-1.7924E-320 - (+0.0 / (var_12/var_13)));
comp += (var_14 * (+0.0 - -1.4541E-306));

}
printf("%.17g\n", comp);

}

$./test-clang
NaN

$./test-nvcc
-2.3139093300000002e-188

0.0 5 -0.0 -1.3121E-306 +1.9332E-313 +1.0351E-306
+1.1275E172 -1.7335E113 +1.2916E306 +1.9142E-319
+1.1877E-306 +1.2973E-101 +1.0607E-181 -1.9621E-306
-1.5913E118-O3

clang –O3

nvcc –O3

Input

IBM Power9, V100 GPUs (LLNL Lassen)

Random Test

http://fpanalysistools.org/

Example 2:
Can –O0 hurt you?

9

void compute(double tmp_1, double tmp_2, double tmp_3,
double tmp_4, double tmp_5, double tmp_6) {
if (tmp_1 > (-1.9275E54 * tmp_2 + (tmp_3 - tmp_4 * tmp_5)))
{

tmp_1 = (0 * tmp_6);
}
printf("%.17g\n", tmp_1);

return 0;
}

Fused multiply-add (FMA) is used by default in XLC

Random tests
$./test-clang
1.3437999999999999e+306

$./test-gcc
1.3437999999999999e+306

$./test-xlc
-0

clang –O0

gcc –O0

xlc –O0

IBM Power9 (LLNL Lassen)

+1.3438E306 -1.8226E305 +1.4310E306 -1.8556E305
-1.2631E305 -1.0353E3

Input

http://fpanalysistools.org/

NVIDIA GPUs Deviate from IEEE Standard

● CUDA Programing Guide v10:
○ No mechanism to detect exceptions
○ Exceptions are always masked

10

Compute Capabilities

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v10.0 | 250

Compute Capability

Technical Specifications 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.5

reference bound to a CUDA
array

Maximum width (and height)
for a cubemap surface
reference bound to a CUDA
array

32768

Maximum width (and height)
and number of layers for a
cubemap layered surface
reference

32768 x 2046

Maximum number of surfaces
that can be bound to a
kernel

16

Maximum number of
instructions per kernel 512 million

H.2. Floating-Point Standard
All compute devices follow the IEEE 754-2008 standard for binary floating-point
arithmetic with the following deviations:

‣ There is no dynamically configurable rounding mode; however, most of the
operations support multiple IEEE rounding modes, exposed via device intrinsics;

‣ There is no mechanism for detecting that a floating-point exception has occurred
and all operations behave as if the IEEE-754 exceptions are always masked, and
deliver the masked response as defined by IEEE-754 if there is an exceptional event;
for the same reason, while SNaN encodings are supported, they are not signaling
and are handled as quiet;

‣ The result of a single-precision floating-point operation involving one or more input
NaNs is the quiet NaN of bit pattern 0x7fffffff;

‣ Double-precision floating-point absolute value and negation are not compliant with
IEEE-754 with respect to NaNs; these are passed through unchanged;

Code must be compiled with -ftz=false, -prec-div=true, and -prec-sqrt=true
to ensure IEEE compliance (this is the default setting; see the nvcc user manual for
description of these compilation flags).

Regardless of the setting of the compiler flag -ftz,

‣ Atomic single-precision floating-point adds on global memory always operate in
flush-to-zero mode, i.e., behave equivalent to FADD.F32.FTZ.RN,

‣ Atomic single-precision floating-point adds on shared memory always operate with
denormal support, i.e., behave equivalent to FADD.F32.RN.

In accordance to the IEEE-754R standard, if one of the input parameters to fminf(),
fmin(), fmaxf(), or fmax() is NaN, but not the other, the result is the non-NaN
parameter.

http://fpanalysistools.org/

Tools & Techniques for Floating-Point Analysis

11

GPU Exceptions

• Floating-point exceptions
• GPUs, CUDA

Compiler Variability

• Compiler-induced variability
• Optimization flags

Mixed-Precision

• GPU mixed-precision
• Performance aspects

All tools available here

http://fpanalysistools.org/

Solved Problem: Trapping Floating-Point Exceptions in
CPU Code

● When a CPU exceptions occurs, it is signaled
○ System sets a flag or takes a trap
○ Status flag FPSCR set by default

● The system (e.g., Linux) can also cause the floating-point
exception signal to be raised

○ SIGFPE

12

Source: https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.genprogc/floating-point_except.htm

https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.genprogc/floating-point_except.htm

http://fpanalysistools.org/

CUDA has Limited Support for Detecting Floating-Point
Exceptions

● CUDA: programming language of NVIDIA GPUs
● CUDA has no mechanism to detect exceptions

○ As of CUDA version: 10

● All operations behave as if exceptions are masked

13

You may have “hidden” exceptions in your CUDA program

http://fpanalysistools.org/

Detecting the Result of Exceptions in a CUDA Program

● Place printf statements in the code (as many a possible)

● Programming checks are available in CUDA:

○ Also available isinf

14

double x = 0;
x = x/x;
printf("res = %e\n", x);

__device__ int isnan (float a);
__device__ int isnan (double a);

These solutions are not ideal; they require significant programming effort

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html

http://fpanalysistools.org/

FPChecker

● Automatically detect the location of FP exceptions in NVIDIA GPUs
○ Report file & line number
○ No extra programming efforts required

● Report input operands
● Use software-based approach (compiler)
● Analyze optimized code

15

http://fpanalysistools.org/

Workflow of FPChecker

16

CUDA
Program

LLVM
Compiler

Runtime

device
code

Runtime

Input Exceptions
Report

Compilation phase Execution phase

host
code

Binary

Instrumentation

Runtime

Binary

Runtime

http://fpanalysistools.org/

Example of Compilation Configuration for FPChecker

17

#CXX = nvcc
CXX = /path/to/clang++
CUFLAGS = -std=c++11 --cuda-gpu-arch=sm_60 -g
FPCHECK_FLAGS = -Xclang -load -Xclang /path/libfpchecker.so \

-include Runtime.h -I/path/fpchecker/src
CXXFLAGS += $(FPCHECK_FLAGS)

Use clang instead of NVCC

● Load instrumentation library
● Include runtime header file

http://fpanalysistools.org/

We report Warnings for Latent Underflows/Overflows

18

0
+∞-∞

NormalSubnormalSubnormalNormal

Danger zone

● -D FPC_DANGER_ZONE_PERCENT=x.x:
a. Changes the size of the danger zone.
b. By default, x.x is 0.10, and it should be a number between 0.0 and 1.0.

http://fpanalysistools.org/

Example of Error Report

19

+--------------------------- FPChecker Error Report ---------------------------+
Error : Underflow
Operation : MUL (9.999888672e-321)
File : dot_product_raja.cpp
Line : 32
+--+

Slowdown: 1.2x − 1.5x

http://fpanalysistools.org/

Tools & Techniques for Floating-Point Analysis

20

GPU Exceptions

• Floating-point exceptions
• GPUs, CUDA

Compiler Variability

• Compiler-induced variability
• Optimization flags

Mixed-Precision

• GPU mixed-precision
• Performance aspects

http://fpanalysistools.org/

A Hard-To-Debug Case

21

clang –O1: |e| = 129941.1064990107
clang –O2: |e| = 129941.1064990107
clang –O3: |e| = 129941.1064990107

gcc –O1: |e| = 129941.1064990107
gcc –O2: |e| = 129941.1064990107
gcc –O3: |e| = 129941.1064990107

xlc –O1: |e| = 129941.1064990107
xlc –O2: |e| = 129941.1064990107
xlc –O3: |e| = 144174.9336610391

Hydrodynamics mini application

Early development and porting to new
system (IBM Power8, NVIDIA GPUs)

How to debug it?

http://fpanalysistools.org/

Root-Cause Analysis Process

22

File Function
(code region) Line of CodeBuggy Program

http://fpanalysistools.org/

Delta Debugging

● Identifies input that makes problem manifest
○ Input for us: file & function

● Identifies minimum input
● Iterative algorithm

○ Average case: O(log N)

○ Worst case: O(N)

23

http://fpanalysistools.org/

Delta Debugging Example

24

Input: func1, func2, func3, func4, func5, func6, func7, func8

Bug: Wrong results when:
1. func3 and func7 are compiled with high optimization
2. Remaining functions compiled low optimization

func1, func2, func3, func4 func5, func6, func7, func8

Step 1
Split input

Step 2

func1, func2, func3, func4

func5, func6, func7, func8

chunk 1 à low optimization chunk 2 à high optimization

func1, func2, func3, func4
func5, func6, func7, func8

chunk 1 à high optimization chunk 2 à low optimization

http://fpanalysistools.org/

Delta Debugging Example

25

● Chunk 1 can be removed (also chunk 3 later)
● Restart from smaller input (func3, func4, func7, func8)
● Final result: func3, func7

func1, func2 func3, func4 func5, func6 func7, func8

Step 3 use chunks of finer granularity

func1, func2

func3, func4, func5, func6, func7, func8

chunk 1 à low optimization chunks 2,3,4 à high optimization

http://fpanalysistools.org/

Results: File & Function Isolated

● File: raja/kernels/quad/rQDataUpdate.cpp
● Function: rUpdateQuadratureData2D

● Problem goes away when:
○ rUpdateQuadratureData2D compiled with –O2

○ Other functions with –O3

26

Optimization level Energy

-O2 |e| = 129941.1064990107

-O3 |e| = 144174.9336610391

-O3 (except rUpdateQuadratureData2D) |e| = 129664.9230608184

http://fpanalysistools.org/

Other Problems: Subnormal Numbers

● Subnormal numbers + -O3 = bad results

● Suggestion: Do not use subnormal numbers!

○ Reason 1: may impact performance

○ Reason 2: you lose too much precision

27

http://fpanalysistools.org/

Subnormal Numbers are Inaccurate

28

double x = 1/3.0;
printf("Original : %e\n", x);
x = x * 7e-323;
printf("Denormalized: %e\n", x);
x = x / 7e-323;
printf("Restored : %e\n", x);

Original : 3.333333e-01
Denormalized: 2.470328e-323
Restored : 3.571429e-01

long double x = 1/3.0;
printf("Original : %Le\n", x);
x = x * 7e-323;
printf("Denormalized: %Le\n", x);
x = x / 7e-323;
printf("Restored : %Le\n", x);

Original : 3.333333e-01
Denormalized: 2.305640e-323
Restored : 3.333333e-01

http://fpanalysistools.org/

How to Avoid Subnormal Numbers?

● Use higher precision
○ Research problem: could we selectively expand precision on some functions?

● Scale up, scale down
○ Could work for simple problems only

● Flush underflows to zero
○ Doesn’t fix the underlying problem

○ Eliminates performance issues

● Algorithmic change

29

http://fpanalysistools.org/

FLiT

30

Multiple Levels:
● Determine variability-inducing compilations

● Analyze the tradeoff of reproducibility and
performance

● Locate variability by identifying files and
functions causing variability

Bisection Method

Michael Bentley
University of Utah

http://fpanalysistools.org/

Tools & Techniques for Floating-Point Analysis

31

GPU Exceptions

• Floating-point exceptions
• GPUs, CUDA

Compiler Variability

• Compiler-induced variability
• Optimization flags

Mixed-Precision

• GPU mixed-precision
• Performance aspects

http://fpanalysistools.org/ 32

FP64 (double precision) Mixed-Precision (FP64 & FP32)

LULESH
NVIDIA P100 GPU

6 digits of accuracy, 10% speedup
3 digits of accuracy, 46% speedup

Run 1 Run 2

How can we take advantage of floating-
point mixed-precision?

http://fpanalysistools.org/

Floating-Point Precision Levels in NVIDIA GPUs Have
Increased

33

0

0.1

0.2

0.3

0.4

0.5

0.6

2006 2008 2009 2010 2012 2013 2014 2016 2017 2019

FP64:FP32 Performance Ratio

1:8
Tesla
FP64
FP32

1:8
Fermi
FP64
FP32

1:24
Kepler
FP64
FP32

1:32
Maxwell
FP64
FP32

1:2
Pascal
FP64
FP32
FP16

1:2
Volta
FP64
FP32
FP16

FP32

FP32, FP64
Compute capability 1.3

http://fpanalysistools.org/

Mixed-Precision Programing is Challenging

34

● Scientific programs have many variables
● {FP32, FP64} precision: 2N combinations
● {FP16, FP32, FP64} precision: 3N combinations

http://fpanalysistools.org/

Example of Mixed-Precision Tuning

35

GPUMixer: Performance-Driven Floating-Point Tuning 5

define their own metric for error, however, for this illustrative case, we define
the relative error introduced by mixed-precision as: error = (|(x−x0)/x|+ |(y−
y0)/y| + |(z − z0)/z|) ∗ 100.0, where x, y, z are the particle positions for the
baseline, and x0, y0, z0 are the particle positions for a new configuration.

1 __global__ void bodyForce(double *x, double *y,
2 double *z, double *vx, double *vy, double *vz,
3 double dt , int n)
4 {
5 int i = blockDim.x * blockIdx.x + threadIdx.x;
6 if (i < n) {
7 double Fx =0.0; double Fy =0.0; double Fz =0.0;
8 for (int j = 0; j < n; j++) {
9 double dx = x[j] - x[i];

10 double dy = y[j] - y[i];
11 double dz = z[j] - z[i];
12 double distSqr = dx*dx + dy*dy + dz*dz + 1e-9;
13 double invDist = rsqrt(distSqr);
14 double invDist3 = invDist * invDist * invDist;
15 Fx += dx*invDist3; Fy += dy*invDist3; Fz += dz*invDist3;
16 }
17 vx[i] += dt*Fx; vy[i] += dt*Fy; vz[i] += dt*Fz;
18 }
19 }

Listing 1.1. Force computation in an N-body simulation

Table 1 shows the particle values, error, and performance speedup of four
configuration with respect to the baseline, case 1. Case 2 shows the configuration
where all variables in the kernel are declared as FP32, i.e., as float. We observe
that while the speedup is significant, 53%, the error is high, 15.19. Case 3 shows
the case where only variable invDist3 is declared as FP32 and the rest as FP64—
in this case the error decreases, but the speedup is not too high, only 5%. Case 4
shows an interesting case: when the variable invDist3 is the only one declared
as FP32, the error is very low, but the speedup is negative, i.e., performance
degrades. Case 5 shows the best we found when the distSqr,invDist, and
invDist3 variables are declared as FP32: the error is lower than as in case 4 while
the speedup is about 11%. This example illustrates that some configurations can
produce low performance speedup or even performance degradation; the goal of
our approach is to find via static analysis configurations such as 3 and 5 that
improve performance and discard cases such as 4.

3.2 Configurations

While mixed-precision configurations can be expressed in terms of the precision
of variable declarations (as in the previous example), a more precise approach is
to express configurations in terms of the precision of floating-point operations.
The reason behind this is that a variable can be used in multiple floating-point
operations; the precision of each of these operations can be decreased/increased.

More formally, given a program with N floating-point arithmetic operations
and two classes of floating-point precision, e.g., FP32 and FP64, a configuration
is a set of operations on which a subset of n1 operations are executed in one
precision and a subset of n2 operations are executed in another precision, such

A
u

th
o

r
P

ro
o

f

Force computation kernel in n-body simulation (CUDA)

double -> float

Error of particle position
(x,y,z)

!"!#
! + %"%#

% + &"&#
&

(x,y,z): baseline position
(x0,y0,z0): new configuration

http://fpanalysistools.org/

GPUMixer: Performance-Driven Floating-Point Tuning 5

define their own metric for error, however, for this illustrative case, we define
the relative error introduced by mixed-precision as: error = (|(x−x0)/x|+ |(y−
y0)/y| + |(z − z0)/z|) ∗ 100.0, where x, y, z are the particle positions for the
baseline, and x0, y0, z0 are the particle positions for a new configuration.

1 __global__ void bodyForce(double *x, double *y,
2 double *z, double *vx, double *vy, double *vz,
3 double dt , int n)
4 {
5 int i = blockDim.x * blockIdx.x + threadIdx.x;
6 if (i < n) {
7 double Fx =0.0; double Fy =0.0; double Fz =0.0;
8 for (int j = 0; j < n; j++) {
9 double dx = x[j] - x[i];

10 double dy = y[j] - y[i];
11 double dz = z[j] - z[i];
12 double distSqr = dx*dx + dy*dy + dz*dz + 1e-9;
13 double invDist = rsqrt(distSqr);
14 double invDist3 = invDist * invDist * invDist;
15 Fx += dx*invDist3; Fy += dy*invDist3; Fz += dz*invDist3;
16 }
17 vx[i] += dt*Fx; vy[i] += dt*Fy; vz[i] += dt*Fz;
18 }
19 }

Listing 1.1. Force computation in an N-body simulation

Table 1 shows the particle values, error, and performance speedup of four
configuration with respect to the baseline, case 1. Case 2 shows the configuration
where all variables in the kernel are declared as FP32, i.e., as float. We observe
that while the speedup is significant, 53%, the error is high, 15.19. Case 3 shows
the case where only variable invDist3 is declared as FP32 and the rest as FP64—
in this case the error decreases, but the speedup is not too high, only 5%. Case 4
shows an interesting case: when the variable invDist3 is the only one declared
as FP32, the error is very low, but the speedup is negative, i.e., performance
degrades. Case 5 shows the best we found when the distSqr,invDist, and
invDist3 variables are declared as FP32: the error is lower than as in case 4 while
the speedup is about 11%. This example illustrates that some configurations can
produce low performance speedup or even performance degradation; the goal of
our approach is to find via static analysis configurations such as 3 and 5 that
improve performance and discard cases such as 4.

3.2 Configurations

While mixed-precision configurations can be expressed in terms of the precision
of variable declarations (as in the previous example), a more precise approach is
to express configurations in terms of the precision of floating-point operations.
The reason behind this is that a variable can be used in multiple floating-point
operations; the precision of each of these operations can be decreased/increased.

More formally, given a program with N floating-point arithmetic operations
and two classes of floating-point precision, e.g., FP32 and FP64, a configuration
is a set of operations on which a subset of n1 operations are executed in one
precision and a subset of n2 operations are executed in another precision, such

A
u

th
o

r
P

ro
o

f Example of Mixed-Precision Tuning (2)

36

No. Variables in FP32 Error Speedup(%)
1 All 15.19 53.70
2 invDist3 4.08 5.78
3 distSqr 1.93 -43.35
4 invDist3, invDist, distSqr 1.80 11.69

X

Force computation kernel in n-body simulation (CUDA)

http://fpanalysistools.org/

GPUMixer: Performance-Driven Floating-Point Tuning
for GPU Scientific Applications

37

Ignacio Laguna, Paul C. Wood, Ranvijay Singh, Saurabh Bagchi. GPUMixer: Performance-Driven Floating-Point Tuning
for GPU Scientific Applications. ISC High Performance, Frankfurt, Germany, Jun 16-20, 2019 (Best paper award)

kernel1
kernel2
kernel3

Profiling Run
(Optional)

Compiler Static
Analysis

Accuracy-
Driven Analysis

Fast
Mixed-Precision
Configurations

GPU Program GPU program
• Performance speedup
• Accuracy constraints

satisfied

Dynamic analysis

http://fpanalysistools.org/
http://fpanalysistools.org/

TYPE
CONFIGURATION

PRECIMONIOUS

TEST
INPUTS

SOURCE
CODE

MODIFIED
PROGRAM

Dynamic Analysis for Floating-Point Precision Tuning

Precimonious
“Parsimonious or Frugal with Precision”

Annotated with
error threshold

Less Precision

Speedup

Modified program in
executable format

5

Precimonious
“Parsimonious or Frugal with Precision”

38

Cindy Rubio González
University of California, Davis

http://fpanalysistools.org/

ADAPT: Algorithmic Differentiation for Error Analysis

Computer architectures support multiple levels of precision
○ Higher precision – improves accuracy
○ Lower precision – reduces run time, memory

pressure, and energy consumption

APPROACH

For a given y = f(x)

First order Taylor series approximation at x=a

∆y = f’(a) ∆x

Obtain f’(a) using Algorithmic Differentiation (AD)

Identifies critical sections that need to be in higher precision

Harshitha Menon et al., ADAPT: Algorithmic Differentiation
Applied to Floating-point Precision Analysis. SC’18
https://github.com/LLNL/adapt-fp

Mixed precision speedup:
• 1.1x HPCCG (Mantevo benchmark suite)
• 1.2x LULESH

http://fpanalysistools.org/

Tutorial on Floating-Point Analysis Tools @ SC19
http://fpanalysistools.org/

● Demonstrates several analysis tools
● Hands-on exercises
● Covers various important aspects

● Tutorials
○ SC19, Denver, Nov 17th, 2019

○ PEARC19, Chicago, Jul 30th, 2019

40

http://fpanalysistools.org/

http://fpanalysistools.org/

Correctness 2019: Third International Workshop on
Software Correctness for HPC Applications @ SC19

● November 18, 2019 (full day), at SC19 (Denver)
● There is a session on floating-point mixed precision
● URL: https://correctness-workshop.github.io/2019/

41

https://correctness-workshop.github.io/2019/

http://fpanalysistools.org/

Some Useful References

General Guidance
● P. Dinda and C. Hetland, “Do Developers Understand IEEE Floating Point?”

○ https://doi.ieeecomputersociety.org/10.1109/IPDPS.2018.00068
● Do not use denormalized numbers (CMU, Software Engineering Institute)

○ https://wiki.sei.cmu.edu/confluence/display/java/NUM54-J.+Do+not+use+denormalized+numbers
● The Floating-point Guide

○ https://floating-point-gui.de/
● John Farrier “Demystifying Floating Point” (youtube video)

○ https://www.youtube.com/watch?v=k12BJGSc2Nc&t=2250s
● David Goldberg. “What every computer scientist should know about floating-point arithmetic”. ACM Comput. Surv. 23, 1 (March 1991), 5-48.

○ https://doi.org/10.1145/103162.103163

NVIDIA GPUs & Floating-Point
● Floating Point and IEEE 754 Compliance for NVIDIA GPUs

○ https://docs.nvidia.com/cuda/floating-point/index.html
● Mixed-Precision Programming with CUDA 8

○ https://devblogs.nvidia.com/mixed-precision-programming-cuda-8/

42

https://doi.ieeecomputersociety.org/10.1109/IPDPS.2018.00068
https://wiki.sei.cmu.edu/confluence/display/java/NUM54-J.+Do+not+use+denormalized+numbers
https://floating-point-gui.de/
https://www.youtube.com/watch?v=k12BJGSc2Nc&t=2250s
https://doi.org/10.1145/103162.103163
https://docs.nvidia.com/cuda/floating-point/index.html
https://devblogs.nvidia.com/mixed-precision-programming-cuda-8/

http://fpanalysistools.org/

In Summary

● Many factors can affect floating-point results
○ Compilers, hardware, optimizations, precision, parallelism, …

○ Be aware of how compiler optimizations could change results

● Avoid the use subnormal numbers (you lose too much precision)

● Pay attention to floating-point computations on GPUs

● Mixed precision involves correctness and performance analysis

● Tools community is your friend

43

Funding support provided by BSSw and ECP

Contact: ilaguna@llnl.gov

http://fpanalysistools.org/

Disclaimer

44

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

