
Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Testing Fortran Software with
pFunit

Tom Clune

April 10, 2019

April 10/19Best Practices for HPC Software Developers (Webinar) 1

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Outline

 Unit Testing and Testing Frameworks
 Break for questions and discussion
 pFUnit – capabilities and examples
 Break for questions and discussion
 Obstacles to testing technical software and suggested remedies

April 10/19Best Practices for HPC Software Developers (Webinar) 2

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Modeling

April 10/19 3Best Practices for HPC Software Developers (Webinar)

Plato’s Cave
(objective reality?)

Theory and Data

Mathematical Model

Discretization &
Approximation

Implementation

Executable

Software
Verification

Compiler
Verification

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

 Abort?:
if (x < 0.0) ERROR STOP “ILLEGAL VALUE FOR X”

 Diagnostic print statement:
print*, “loss of mass = ”, deltaMass

 Visual inspection / acceptance threshold for regression:

Not all tests are created equal

9/27/10TDD - SIVO

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Anatomy of a Unit Test

April 10/19Best Practices for HPC Software Developers (Webinar) 5

send
alert

set
preconditions

invoke
system-under-test

release
resources

SUCCEED

check #1

check #2

FAIL

SUCCEED

x_t = compute_distance(x0, v0, a, t0, t1)

x(t) = x0 + v0(t-t0) + ½ a (t-t0)2

x0 = 1.0
v0 = 2.0
a = 4.0
t0 = 1.0
t1 = 2.0

call assert_equal(5.0, x_t)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Attributes of Good Unit Tests

Silent on success
Automated and repeatable
Independent (no side effects)
Transparent (obvious, but not tautological)
Narrow/precise
Orthogonal (1 bug ==> 1 failing test)
Small / frugal

And in aggregate we want the tests to cover our entire application.

April 10/19Best Practices for HPC Software Developers (Webinar) 6

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Test Fixtures & Parameterized Tests

 Test fixture
 Extracts complex initialization into separate setup procedure run before test itself
 Ensures release of resources in teardown procedure

• Even if test fails!
 Esp. useful if many tests share similar data structures

 Parameterized test: run multiple times but with varying inputs and expected outputs.
 Generally used in combination with a test fixture
 Failure messages must identify which case(s) failed

April 10/19Best Practices for HPC Software Developers (Webinar) 7

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Testing Frameworks

 Greatly simplify testing
 Test creation

• post conditions (asserts)
• Fixtures: set up, tear down, repeat test with different parameters
• aggregation (test suites)
 Test execution

• Summary
• Failure locations (ftest/suite name, file, line number)
• Informative failure messages

 Have driven major paradigm shifts in testing methodology
 Developers write tests
 Test driven development (TDD)

April 10/19Best Practices for HPC Software Developers (Webinar) 8

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

The TDD Cycle

April 10/19 9Best Practices for HPC Software Developers (Webinar)

Fa
ilu

re
/re

fa
ct

or

success

Focus on Interface Focus on Algorithm

Implement
Test

Implement
Solution

Run
Tests

 Very small incremental changes

 What is a minimal test that
moves the design forward?

 What is the smallest change to
make test pass?

 Rapid cycle << 10 minutes

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

TDD

 Perceived benefits
 High test coverage
 Software always “ready-to-ship”
 Improved productivity (and lower stress)
 Tests form a robust maintained form of documentation
 Up front focus on interfaces leads to better design.

 Downside?
 2X-3X total lines of code (tough sell to management)
 Refactoring is more difficult (but …)

 Challenges
 Legacy code
 Esp. procedural legacy code “To me, legacy code is simply code without tests.”

― Michael C. Feathers,
Working Effectively with Legacy Code

April 10/19Best Practices for HPC Software Developers (Webinar) 10

https://www.goodreads.com/work/quotes/44241

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Break for Questions

April 10/19Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

pFUnit

parallel Fortran Unit testing framework

April 10/19 12Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

pFUnit: Summary of Features

 Aimed at scientific software written in Fortran (and optionally MPI)
 A bit of OpenMP as well (locking)

 Leverages Fortran 2003 object-oriented features
 Very extensible
 But … requires very recent compilers (ifort 18.03, gcc 8.2, NAG 6.2)
 Developed with TDD

 Python base preprocessor used to simplify things that are hard/tedious in
Fortran
 Provides for expressive @ annotations (@assertEqual, @test …)

 Various command line options: (--debug, –filter, --help, …)

April 10/19Best Practices for HPC Software Developers (Webinar) 13

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

pFUnit: Assertions and Exceptions

April 10/19 14

 Vast library of numerical assertions
 @assertEqual

• real, complex (and integer, logical, character)
• Kinds: default, double, REAL32, REAL64, REAL128
• Absolute and relative tolerances (default tolerance of 0)

 @assertLessThan, @assertGreaterThan (real)
 Arbitrary ranks default build is max rank of 5)

• L1, L2, L∞ norms for arrays (real, complex)
 @assertIsNaN, @assertIsFinite, …

 Exceptions implemented as a global stack (no true exceptions in Fortran)
 Includes test name, source location, and description of failure

 Simple example: @assertEqual(3.14159, 22./7, tolerance=1.e-5)

Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

pFUnit: Tests and Test Runners

April 10/19 15

Test declarations
 Simple @test annotation to indicate a subroutine is a test
 Fixture annotations:
 @before, @after,

 Parameterized tests – advanced
 Use by extending ParameterizedTestCase
 Extension annotations: @testCase, @testParameter

 RobustRunner will attempt to run tests in a separate process
 Can (theoretically*) handle hanging and crashing tests
 Invoke on command line with “-r robust”
 Alternatively run with debugging “-d”

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

pFUnit: MPI support

April 10/19 16

 MPI test (implemented as subclass of ParameterizedTestCase)
 Runs a test on varying number of processes

• Simple annotation extension – e.g., test(npes=[1,3,7]) runs test 3 times.
• Each instance gets new communicator with requested num. of pe’s.

 Provides simple type-bound functions to access
• MPI Communicator (MPI_COMM_WORLD is a no-no)
• # processes
• MPI rank

 Exceptions and Asssertions
 Exceptions on any process gathered and reported on root process

• Failure description decorated with process and NPES
 Be careful: failed assertions return immediately

• Can lead to illegal MPI calls later in test if some processes continue
• @mpiAssert – Blocking; ensures all processes exit if any process fails an assertion

Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Examples: Installation

April 10/19 17

1. Build and install pFUnit 4.0 (develop branch)
% git clone git://github.com/Goddard-Fortran-Ecosystem/pFUnit.git
% cd pFUnit
% git checkout develop
% mkdir build
% export PFUNIT_DIR=<prefix>
% cmake .. –DCMAKE_INSTALL_PREFIX=$PFUNIT
% make –j tests
% make install

2. Clone demos repository (source)
% git clone git://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos.git
% cd pFUnit_demos
% …

Best Practices for HPC Software Developers (Webinar)

https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Example: ./Trivial

April 10/19 18

 Just the minimal amount of code, test, build/run scripts
Elements
 square.F90 – the system under test
 test_square.pf – a single unit test
CMakeLists.txt & Makefile
Driver scripts:

• build_with_cmake_and_run.x
• build_with_make_and_run.x

Best Practices for HPC Software Developers (Webinar)

https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Trivial/square.F90
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Trivial/test_square.pf
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Trivial/CMakeLists.txt
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Trivial/Makefile
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Trivial/build_with_cmake_and_run.x
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Trivial/build_with_make_and_run.x

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Trivial: ./Trivial (cont’d)

April 10/19 19Best Practices for HPC Software Developers (Webinar)

Square.F90

test_square.pf

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration Example: ./Trivial (cont’d)

April 10/19 20Best Practices for HPC Software Developers (Webinar)

CMakeLists.txt

Include pFUnit

Macro to build
test

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Example: ./Trivial (output)

April 10/19 21Best Practices for HPC Software Developers (Webinar)

.
Time: 0.000 seconds

OK
(1 test)

One “.” per test - to
monitor progress

Success/status

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Example: ./Basic

April 10/19 22

Demonstrates a variety of basic pFUnit features and capabilities
 Source directory has 2 implementations: working and broken
 Implement elemental square() function and integer factorial function

 Basic assertions: test_simple.pf
 See what failure messages look like: test_failing.pf
 Various mechanisms to skip tests: test_disable.pf

1. @disable annotation – test not run, but tallied in summary
2. !@test not mentioned at all
3. @test(#ifdef=foo) – test is run if -Dfoo
4. @test(#ifndef=foo) – test is run if not -Dfoo

 Very simple example using setup and teardown methods: test_simple_fixture.pf
 Testing source code error handling: test_error_handling.pf

Best Practices for HPC Software Developers (Webinar)

https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Basic/src/working_sut.F90
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Basic/tests/test_simple.pf
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Basic/tests/test_failing.pf
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Basic/tests/test_disable.pf
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Basic/tests/test_simple_fixture.pf
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/Basic/tests/test_error_handling.pf

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space AdministrationpFUnit: output from failing tests (1 of 3)

April 10/19 23Best Practices for HPC Software Developers (Webinar)

bash-3.2$./broken_tests
.F.F.F
Time: 0.001 seconds

Failure
in:

test_failing_suite.test_assert_true_and_false_fail
Location:

[test_failing.pf:14]
intentionally failing test

…

progress bar – 3 tests; 3 failed

Extra message supplied by
developer

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space AdministrationpFUnit: output from failing tests (2 of 3)

April 10/19 24Best Practices for HPC Software Developers (Webinar)

…
Failure
in:
test_failing_suite.test_assert_equal_fail
Location:

[test_failing.pf:26]
intentionally failing test
AssertEqual failure:

Expected: <9.000000>
Actual: <9.000988>

Difference: <0.9880066E-03> (greater than tolerance of 0.1000000E-03)

Failure
in:
test_failing_suite.test_fail_array
Location:

[test_failing.pf:36]
intentionally failing test
ArrayAssertEqual failure:

Expected: <4.000000>
Actual: <4.410326>

Difference: <0.4103265> (greater than tolerance of 0.1000000)
at index: [2]

<suite_name>.<test_name>

[<file>:<line_number]

Failure description

Index of first incorrect element

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration pFUnit: failing test output (3 of 3)

April 10/19 25Best Practices for HPC Software Developers (Webinar)

…
FAILURES!!!
Tests run: 3, Failures: 3, Errors: 0
, Disabled: 0
ERROR STOP: *** Encountered 1 or more failures/errors during testing. ***

summary

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

pFUnit: disabled test output

April 10/19 26Best Practices for HPC Software Developers (Webinar)

bash-3.2$./disabled_test
.I..
Time: 0.000 seconds

OK
(3 tests, 1 disabled)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

pFUnit: disabled test output

April 10/19 27Best Practices for HPC Software Developers (Webinar)

bash-3.2$./disabled_test -d

Start: <test_disable_suite.test_1_active>
. end: <test_disable_suite.test_1_active>

Disable: <test_disable_suite.test_2_disabled>
I

Start: <test_disable_suite.test_3_active>
. end: <test_disable_suite.test_3_active>

Start: <test_disable_suite.test_if_not_foo_defined>
. end: <test_disable_suite.test_if_not_foo_defined>

Time: 0.001 seconds

OK
(3 tests, 1 disabled)

debug option

Start/end progress

disabled in summary

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Example: ./MPI

April 10/19 28

Demonstrates tests for MPI-based
software:
 Tests: test_halo.pf
 Build: CMakeLists.txt
 Things we want to test

1. Rank of neighbors
2. Interior not changed
3. Halo filled from neighbor values

Best Practices for HPC Software Developers (Webinar)

2D arrays with
1D domain decomposition
Not periodic

Halo/guard cells on North

Halo/guard cells on South

https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/MPI/tests/test_halo.pf
https://github.com/Goddard-Fortran-Ecosystem/pFUnit_demos/blob/master/MPI/tests/CMakeLists.txt

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Example: ./MPI (cont’d)

April 10/19 29Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Example: ./MPI (cont’d)

April 10/19 30Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Example: ./MPI (cont’d)

April 10/19 31Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Examples: ./MPI output

April 10/19 32Best Practices for HPC Software Developers (Webinar)

test 1
Start 1: mpi_tests

1: Test command: /Users/tclune/installed/Compiler/nag-6.2_clang-
9.1/openmpi/3.1.2/bin/mpirun "--oversubscribe" "-np" "4" "mpi_tests"
1: Test timeout computed to be: 10000000
1:
1: Time: 0.001 seconds
1:
1: OK
1: (18 tests)
1: 1/1 Test #1: mpi_tests Passed 0.13 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.14 sec

Each #pes is different test

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

What is new in pFUnit 4.0 (beta)

April 10/19 33

 Major cleanup of source code and build system
 Single build for serial and MPI (and ESMF tests)
 Very few compiler warnings, compiler #ifdef’s …

 (Possibly) improved RobustRunner – for crashes and hangs
 Extensible annotations: @disable, @timeout(0.5), …
 Users can add their own (funitproc needs some tweaks)

 Miscellaneous
 Improved build macros (cmake and make) for creating executable tests
 Support for Test Anything Protocol (TAP)
 Support for testing Earth System Modeling Framework (ESMF) gridded components

Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

New in 4.0 (cont’d)

April 10/19 34

 fHamcrest (Fortran version of hamcrest)
 Composable system of “matchers” – leads to significantly improved extensibility
 Self-describing – better error messages
 Assertions read almost like sentences
 Simple examples:

 What about MPI?
• Not in 4.0 due to a technical issue that needs to be resolved
• But expect it to look something like:

Best Practices for HPC Software Developers (Webinar)

@assert_that(x, is(equal_to(5))
@assert_that([i,j,k], is_not(permutation_of([1,2,3]))
@assert_that(x, is(all_of([greater_than(0),less_than(5)]))

@assert_that(x, on_process(5, comm, is(relatively_near(10.,0.1))))
@assert_that(x, on_all_processes(comm, is(equal_to(5)))

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Summary

 pFUnit 4.0 (beta) has been released as 4/7/2019
 Please try it out!

 Expected in 4.1
 Coarray based tests with CAF_TestCase

• Requires F2018 teams to be useful
 Extending fHamcrest

• Esp. pfHamcrest

April 10/19Best Practices for HPC Software Developers (Webinar) 35

https://github.com/Goddard-Fortran-Ecosystem/pFUnit/releases/tag/v4.0_beta

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

References

 Junit: https://github.com/junit-team
 pFUnit: https://github.com/Goddard-Fortran-Ecosystem/pFUnit
 Test-Driven Development: By Example, Kent Beck
 Working Effectively with Legacy Code, Michael Feathers
 T. Clune, H. Finkel, and M. Rilee “Testing and Debugging Exascale Applications by

Mocking MPI”, SE-HPCCSE, 2015.
 T. Clune and R. Rood, “Software Testing and Verification in Climate Model

Development”, IEEE Software Volume 28 Issue 6, November 2011.

April 10/19Best Practices for HPC Software Developers (Webinar) 36

https://github.com/junit-team
https://github.com/Goddard-Fortran-Ecosystem/pFUnit

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Questions?

(Stick around for discussion about testing obstacles and
mitigations.)

April 10/19Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Testing challenges, misconceptions, and methodologies

 Many issues can complicate and even appear to prevent useful unit testing
 Complexity
 Floating-point (inexact) arithmetic
 Distributed parallelism
 Scalability – testing at petascale, exascale, and beyond

 Many/most of these can be addressed or mitigate by 2 complementary techniques:
 Use very fine-grained units (subroutines, functions)
 Use software “mocks” to sidestep complex dependencies.
 What are mocks? Since you asked …

April 10/19Best Practices for HPC Software Developers (Webinar) 38

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Software Mocks

April 10/19 39Best Practices for HPC Software Developers (Webinar)

Test

SUT

Complex
Dependency

Mock provides same interface
but can be configured to
verify inputs and produce
preprogrammed outputs

Mock

configure

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Mock Example: Coupled Climate

April 10/19 40Best Practices for HPC Software Developers (Webinar)

AOGCM

AGCM OGCM

Test?

Impossible to specify
initial conditions with

simple obvious outputs

AOGCM

Mock
AGCM

Mock
OGCM

Mock AGCM
provides wind stress
and expect surface

Temp

Mock OGCM provides
surface temp and

expects wind stress

Test

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Challenge: Algorithmic Complexity

 Irreducible complexity?
 E.g., test of climate model is as complex as climate model?
 No - each software component is tested in isolation. Complexity is O(N).
 Essential approach: software “mocks” for nontrivial dependencies

 Lack of analytic solutions?
 Partial confusion of verification and validation
 Problem is actually that the SUT is too large.
 Mitigation

• Split calculation into small units
• Lowest levels are easily tested in isolation
• Higher levels are tested with mocks (still coming back to that)

 Mitigation of the mitigation – 2 implementations: fused and fine-grained

April 10/19Best Practices for HPC Software Developers (Webinar) 41

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Challenge: Inexact arithmetic

 Assertions for FP results must generally specify a tolerance
 Estimating a reasonable tolerance is problematic
 Too tight – correct implementation fails
 Too loose – incorrect implementation succeeds
 Even when good bounds estimate is available it is impractical

• E.g. RK4 has error that is O(h5) , but what is the leading coefficient?
• And who has spare applied mathematicians lying around?

 Temptation: increase tolerance until test passes (assumes SUT is already correct)

April 10/19Best Practices for HPC Software Developers (Webinar) 42

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Challenge: Inexact arithmetic (cont’d)

April 10/19 43

 What gives rise to (nontrivial) roundoff?
 Subtraction of nearly equal values
 Iterated operations
 …

 Mitigation 1: Use smart input values such that arithmetic is nearly exact
 You don’t need to use physically realistic values to test an expression.
 Trivial example on next slide.

 Mitigation 2: Split complex expressions into nested pieces.
 Test pieces separately with near-exact arithmetic

 Mitigation 3: Split test of iterated calculation
1. Test individual iteration with smart input values
2. Test that iteration iterates

Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Example: The Indiana Pi Bill (this really happened)

April 10/19 44

 Consider a test for a procedure that calculates the area of a circle:
@assertEqual(3.14159265, area(r=1.))
@assertEqual(12.56637060, area(r=2.)) ! Is this output obvious?

 Instead we create a helper function that takes pi as a parameter.
real function area_internal(pi, r)

area_internal = pi*r**2
end function

real function area(r)
use math_constants, only: pi
area = area_internal(pi, r)

end real function

 Now we can test in a sensible manner:
@assertEqual(3, area_internal(pi=3., r=1.))
@assertEqua (12, area_internal(pi=3., r=2.)
@assertEqual(area_internal(pi=pi,r=2.), area(r=2.))

Best Practices for HPC Software Developers (Webinar)

https://en.wikipedia.org/wiki/Indiana_Pi_Bill

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Challenge: Distributed parallelism

April 10/19 45

 Trivial issues: exercising on multiple processes, collecting exceptions, …
 pFUnit – been there, done that.

 Real challenges: tests of functionality that may rely on timing
 Race condition, deadlock, livelock, …

 Solution: Mock MPI (analog of “brain in a vat”)
 Serial software layer with same interfaces as MPI
 Externally configurable to control MPI outputs
 Single process of application “sees” a parallel env.

 Example: Testing mutex
 Cases:

• I request mutex, and no one else has it
• I request mutex, but someone else has it
• I release mutex, but must notify other waiter
• I release mutex, and there is no other waiter

Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Challenge: Exascale

April 10/19 46

 Some defects are only apparent at extreme scale
 Large number of processes
 Large memory

 Debugging at extreme scale is expensive
 Consumes expensive computing resources
 Developer idle – waiting for queue
 Delivery is delayed

 Once fixed, how do we ensure fix is preserved?
 Routine testing too expensive

 Approach: use Mock MPI
 Use Mock MPI to simulate the exascale environment experienced by a process or node.
 Replicate issues on a workstation
 Run ”exascale” regression tests on demand.

Best Practices for HPC Software Developers (Webinar)

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Thank you!

(Questions)

April 10/19Best Practices for HPC Software Developers (Webinar)

	Testing Fortran Software with pFunit
	Outline
	Modeling
	Not all tests are created equal
	Anatomy of a Unit Test
	Attributes of Good Unit Tests
	Test Fixtures & Parameterized Tests
	Testing Frameworks
	The TDD Cycle
	TDD
	Break for Questions
	pFUnit
	pFUnit: Summary of Features
	pFUnit: Assertions and Exceptions
	pFUnit: Tests and Test Runners
	pFUnit: MPI support
	Examples: Installation
	Example: ./Trivial
	Trivial: ./Trivial (cont’d)
	Example: ./Trivial (cont’d)
	Example: ./Trivial (output)
	Example: ./Basic
	pFUnit: output from failing tests (1 of 3)
	pFUnit: output from failing tests (2 of 3)
	pFUnit: failing test output (3 of 3)
	pFUnit: disabled test output
	pFUnit: disabled test output
	Example: ./MPI
	Example: ./MPI (cont’d)
	Example: ./MPI (cont’d)
	Example: ./MPI (cont’d)
	Examples: ./MPI output
	What is new in pFUnit 4.0 (beta)
	New in 4.0 (cont’d)
	Summary
	References
	Questions?
	Testing challenges, misconceptions, and methodologies
	Software Mocks
	Mock Example: Coupled Climate
	Challenge: Algorithmic Complexity
	Challenge: Inexact arithmetic
	Challenge: Inexact arithmetic (cont’d)
	Example: The Indiana Pi Bill (this really happened)
	Challenge: Distributed parallelism
	Challenge: Exascale
	Thank you!

