
Modern CMake

Open source tools to build, test and
package software: CMake, CTest,

CPack, CDash

1

Bill Hoffman
• CTO and a founder of Kitware Inc
• Originator of CMake build tool
• Barefoot/Sandals Ultra distance runner

Google Tech Talk 2009 Leadville CO 2018
2

Technical computing
Algorithms & applications
Software process & infrastructure
Support & training
Open source leadership

SOFTWARE
PROCESS

Collaborative software R&D

Supporting all sectors
Industry, government & academia

3

Kitware’s customers & collaborators
Over 75 academic
institutions…

Over 50 government
agencies and labs…

Over 100 commercial
companies…

Harvard
Massachusetts Institute of Technology
University of California, Berkeley
Stanford University
California Institute of Technology
Imperial College London
Johns Hopkins University
Cornell University
Columbia University
Robarts Research Institute
University of Pennsylvania
Rensselaer Polytechnic Institute
University of Utah
University of North Carolina

National Institutes of Health (NIH)
National Science Foundation (NSF)
National Library of Medicine (NLM)
Department of Defense (DOD)
Department of Energy (DOE)
Defense Advanced Research

Projects Agency (DARPA)
Army Research Lab (ARL)
Air Force Research Lab (AFRL)
Sandia (SNL)
Los Alamos National Labs (LANL)
Argonne (ANL)
Oak Ridge (ORNL)
Lawrence Livermore (LLNL)

Automotive
Aircraft
Defense
Energy technology
Environmental sciences
Finance
Industrial inspection
Oil & gas
Pharmaceuticals
Publishing
3D Mapping
Medical devices
Security
Simulation

4

Open source platforms
• VTK & ParaView interactive visualization and

analysis for scientific data
• ITK & 3D Slicer medical image analysis and

personalized medicine research
• CMake cross-platform build system

– CDash, CTest, CPack, software process tools

• Resonant informatics and infovis
• KWIVER computer vision image and video

analysis
• Other areas include: Simulation, ultrasound,

physiology, information security, materials
science, …

5

What is CMake?

• CMake is the cross-platform, open-source build system that lets you use
the native development tools you love the most.

• It’s a build system generator

• It takes plain text files as input that describe your project and produces
project files or make files for use with a wide variety of native
development tools.

• Family of Software Development Tools
– Build = CMake
– Test = CTest/CDash
– Package = CPack

6

Ninja

Modern CMake
• CMake is code, treat CMakeLists.txt like the rest

of the code, comments
• CMake Targets are objects with public and private

propeties
• Import third party libraries as imported targets
• Export your libraries so they can be used by other

CMake projects

7

CMake: History

• Built for the Insight Segmentation and
Registration Toolkit (ITK) http://www.itk.org

• Funded by National Library of Medicine
(NLM): part of the Visible Human Project
– Data CT/MR/Slice 1994/1995
– Code (ITK) 1999

• Cmake Release-1-0 branch created in 2001

8

http://www.itk.org

CMake has broad usage in the C++ world
KDE 2006 - Tipping Point!

9

• 7000+ downloads per day from www.cmake.org
Indeed.com CMake jobs Full-time(263)

https://www.indeed.com/jobs?q=cmake&jt=fulltime

Adopted by Microsoft

CMake: Features
• Automatic dependency generation (C, C++,

CUDA, Fortran)
– build a target in some directory, and everything

this target depends on will be up to date
– If a header file changes the correct files will be

built.

11

Fortran Module Order

• Old way: make;make;make until it works
• CMake way: cmake; make or cmake; ninja

– CMake will automatically order Fortran files based
on use statements in the code for a library

12

Thread 1

Thread 2

Thread 1

Thread 2

Ninja
• Improved parallelism for ninja builds in CMake 3.9

13

Link

Link

• Can control pools to limit concurrent links

Random list of things CMake does well
• Excellent install commands
• Excellent packaging tools
• Ability to find/link system libraries
• Handles shared libraries and versioning across platforms (linux, mac,

windows)
• Keeps up to date with current and obscure compilers
• Cross platform development support (Linux/Mac/Windows/android/HPC)
• Integration of static/dynamic analysis tools
• Integration of code coverage tools
• Excellent backwards compatibility with itself (policy system)
• Open and dynamic community accepting of changes small and large
• Supports many workflows and IDEs

CMake Workflow

1. Edit files in the source tree
build tree

2. Run cmake-gui (or
cmake or ccmake) to
configure and generate
native build system files

3. Open project files from
the build tree and use the

native build tools

15

cmake –GNinja

Out of source builds

Project Source Tree
Library1 (CMakeLists.txt foo.cxx bar.cxx)

Library2 (CMakeLists.txt car.cxx car.h
fun.F90)

Library3 (CMakeLists.txt gpu.cu ml.cxx)
App1 (CMakeLists.txt exe.cxx)

App2 (CMakeLists.txt exegui.cxx)
Run CMake

Clang Build Tree
CMakeCache.txt – stores
info specific to this build

build.ninja

-GNinja

Run CMake

GCC Build Tree
CMakeCache.txt – stores
info specific to this build

Makefile

-Gunix Makefiles

Run CMake

GCC Build Tree
CMakeCache.txt – stores
info specific to this build

build.ninja

-GNinja

16

Modern CMake

17

CMake Then and Now
CMake 2001

CMakeLists.txt

SUBDIRS = \
Code/Common \

ME = ITK

Code/Common/CMakeLists.txt

ME = ITKCommon

COMPILE_CLASSES =\
itkDataObject \
itkDirectory

WIN32_CLASSES =\
itkWin32OutputWindow

CMake 2008

CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(ITK)
add_subdirectory(Code/Common)

Code/Common/CMakeLists.txt
set(ITKCommonSources
itkDataObject.cxx itkDirectory.cxx)
if(WIN32)
set(ITKCommonSources

${ITKCommonSources}
itkWin32OutputWindow.cxx)
endif()
add_library(ITKCommon
${ITKCommonSources})

CMake 2018

CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(ITK)
add_subdirectory(Code/Common)

Code/Common/CMakeLists.txt
add_library(ITKCommon)
target_sources(ITKCommon PRIVATE
itkDataObject.cxx itkDirectory.cxx ...)
if(WIN32)
target_sources(ITKCommon PRIVATE

itkWin32OutputWindow.cxx)
endif()

Targets are Objects

19

Library

add_library()
target_compile_definitions
target_compile_features
target_include_directories
target_link_libraries
target_sources
get_target_property
set_target_property

Executable

add_executable()
target_compile_definitions
target_compile_features
target_include_directories
target_link_libraries
target_sources
get_target_property
set_target_property

Targets are Objects
• Developer can focus on a single target and not

the whole system
– What include directories will users need?
– What –D flags will users need?
– What compile flags will users need?
– What version of C++ will users need?
– What flags and options will the users not need?

• controlled with public and private declarations

20

“Usage Requirements” aka Modern CMake

Classic style: directory-centric

mylib and anything that links to gets -Imydir

Modern style: target-centric
target_include_directories(mylib PUBLIC "mydir")

include_directories("mydir")

Targets in this directory and subdirs get -Imydir

Before Usage Requirements
• Before Usage Requirements existed

we used directory scoped commands
such as:
– include_directories
– compile_definitions
– compile_options

• Consumers have to know:
– Does the dependency generate

build tree files
– Does the dependency use any

new external package

Directory

Directory

Executable Library B

Directory

Library A

22

Modern CMake / Usage Requirements

• Modern CMake goal is to have each target
fully describe how to properly use it.

• No difference between using internal and
external generated targets

23

Modern CMake layout independent
Root

Directory

Executable Library B

Directory

Library A

Root

Executable Library A Library B

Executable
Library B Library A

Library A
24

Modern CMake Mostly about not
using these commands

• add_compile_options()
• add_definitions()
• include_directories()
• link_directories()
• link_libraries()

And treating targets like objects

25

Usage Requirements
• target_link_libraries is the foundation

for usage requirements
• This foundation is formed by

– PUBLIC
– PRIVATE
– INTERFACE

26

target_include_directories
• Propagates include directories

• Anything that links to leaf will automatically
have the zlib_dir on the include line

27

target_compile_options
• Propagates compiler options

• Only trunk will be built optimized for the
current hardware. Anything that links to trunk
will not get this flag

28

target_compile_definitions
• Propagates pre-processor definitions

• Root will have ROOT_VERSION defined and
anything that links to it will also

29

INTERFACE Libraries
• An INTERFACE library target does not directly

create build output, though it may have
properties set on it and it may be installed,
exported, and imported.

30

IMPORTING / EXPORTING

31

Imported Targets
• Logical name for an outside library
• Reference like any other target

32

Imported Targets
• Per-configuration import rules
• Better than optimized/debug keywords

33

Exporting Targets
• Install rules can generate imported targets

• Installs library and target import rules
– <prefix>/lib/tree/libparasite.a
– <prefix>/lib/tree/tree-targets.cmake

34

Conditional Includes
• Able to specify include directories based on if we are building a library

or using the installed version

35

Generating Export Package
• This is constructing components needed for the CMake-aware config

package
• CMakePackageConfigHelpers can help with the generation of the

<Name>Config.cmake file
• Exporting of find package calls has to replicated inside

<Name>Config.cmake, but CMakeFindDependencyMacro helps simplfy
this

36

Generating Export Package

37

Exporting Targets

38

CMake 3.8: CUDA

39

add_library(support STATIC support_functions.cu)
set_target_properties(support PROPERTIES

CUDA_SEPARABLE_COMPILATION ON
POSITION_INDEPENDENT_CODE ON)

target_link_libraries(support PRIVATE compiler_info)

add_library(black_scholes
black_scholes/Serial.cpp
black_scholes/Parallel.cu

)
target_link_libraries(black_scholes PUBLIC compiler_info support)

INSTALL RULES

Install Rules
• Specify rules to run at install time
• Can install targets, files, or directories
add_library(leaf SHARED leaf.cxx)
install(TARGETS root trunk leaf parasite

RUNTIME DESTINATION bin
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib

)

Install Rules
• To install files:

install(FILES
trunk.h
leaf.h
DESTINATION include

)

Using Config Modules
• find_package also supports config modules
• Config modules are generated by CMake

export command
• Automatically generate import targets with all

information, removing the need for
consuming projects to write a find module

43

CMake Scripts
• cmake –E command

– Cross platform command line utility for:
– Copy file, Remove file, Compare and conditionally copy,

time, others

• cmake –P script.cmake
– Cross platform scripting utility
– Does not generate CMakeCache.txt
– Ignores commands specific to generating build

environment

44

OBJECT Libraries
add_library(root OBJECT root.cxx)
add_library(trunk OBJECT trunk.cxx)
add_library(leaf SHARED leaf.cxx)
target_link_libraries(leaf root trunk)

[100%] Linking CXX shared library libleaf.so
/usr/bin/c++ -fPIC -shared -Wl,-soname,libleaf.so

-o libleaf.so leaf.cxx.o root.cxx.o trunk.cxx.o

CTEST

46

Automatic Testing Benefits

“Automated Software Testing,”
1999, Dustin, et al, Addison Wesley

47

Video of ParaView Nightly Testing

48

Testing with CMake
• Testing needs to be enabled by calling include(CTest) or
enable_testing()

add_test(NAME testname
COMMAND exename arg1 arg2 ...)

– Executable should return 0 for a test that passes
• ctest – an executable that is distributed with cmake that

can run tests in a project.
• CDash – Web based dashboard to show testing results.

CTest
• Run ctest at the top of a binary directory to run all tests

$ ctest
Test project /tmp/example/bin

Start 1: case1
1/1 Test #1: case1 Passed 0.00 sec

Start 2: case2
2/2 Test #2: case2 Passed 0.00 sec

100% tests passed, 0 tests failed out of 2

Total Test time (real) = 0.01 sec

CTest
• -j option allows you to run tests in parallel
• -R option allows you to choose a test
• Running tests from Makefiles or projects

– make test
– Build RUN_TESTS project

• ctest --help for more information

51

GoogleTest integration

• gtest_discover_tests: new in CMake 3.10.
– CMake asks the test executable to list its tests.

Finds new tests without rerunning CMake.

include(GoogleTest)
add_executable(tests tests.cpp)
target_link_libraries(tests GTest::GTest)

gtest_discover_tests(tests TEST_PREFIX new:)

https://blog.kitware.com/dynamic-google-test-discovery-in-cmake-3-10/

Static Analysis
• Supported tools include:

– include-what-you-use
– link-what-you-use
– clang-tidy
– cpplint
– cppcheck

• Setup instructions available here:
– https://blog.kitware.com/static-checks-with-cmake-cdash-

iwyu-clang-tidy-lwyu-cpplint-and-cppcheck/

https://blog.kitware.com/static-checks-with-cmake-cdash-iwyu-clang-tidy-lwyu-cpplint-and-cppcheck/

CDash

54

Software Process Dashboards

55

CDash Dashboard www.cdash.org

56

CDash works with other CI tools
• Jenkins
• Buildbot
• Gitlab/CI
• ctest scripts and cronjobs
• CircleCI
• Travis

57

Search for relevant results

Compare results across systems

Track test timing

CDash Subproject Support

Main Project

Sub Projects

61

CDash Queries

Show the HEAVY builds for the last two weeks:

CDash Queries
Show most expensive tests yesterday:

CTest Command Wrappers Output

64

Coverage Display GCov/Bullseye

65

Valgrind / Purify

66

CDash Image Difference

67

CPack

68

What is CPack
• CPack is bundled with CMake
• Creates professional platform specific installers

CPack Features
• Supports CMake-based and non-CMake-based projects
• Unix

– TGZ and self-extracting TGZ (STGZ)
• Windows

– WiX – MSI installers
– NullSoft Scriptable Install System (NSIS / NSIS64)

• Mac OSX
– DragNDrop
– PackageMaker

• Deb
– Debian packages

• RPM
– RPM package manager

Using CPack
• On Windows install command line ZIP program,

NSIS and WiX
• Setup your project to work with cpack

– Get make install to work
• install(…)
• make sure your executables work with relative paths and

can work from any directory
– Set cpack option variables if needed
– include(CPack)

Now that you are inspired
• Read “how to write a CMake buildsystem”

– https://cmake.org/cmake/help/v3.8/manual/cmake-buildsystem.7.htmlExplore the
CMake documentation

• Explore the CMake documentation
– https://www.cmake.org/cmake/help/v3.8/

72

https://cmake.org/cmake/help/v3.8/manual/cmake-buildsystem.7.html
https://www.cmake.org/cmake/help/v3.8/

Software
Repository

Build, Test
& Package

Community
Review

Developers
& Users

Thanks

73

	Modern CMake
	Bill Hoffman
	Slide Number 3
	Kitware’s customers & collaborators
	Open source platforms
	What is CMake?
	Modern CMake
	CMake: History
	Slide Number 9
	Adopted by Microsoft
	CMake: Features
	Fortran Module Order
	Ninja
	Random list of things CMake does well
	CMake Workflow
	Out of source builds
	Modern CMake
	 CMake Then and Now
	Targets are Objects
	Targets are Objects
	“Usage Requirements” aka Modern CMake
	Before Usage Requirements
	Modern CMake / Usage Requirements
	Modern CMake layout independent
	Modern CMake Mostly about not using these commands
	Usage Requirements
	target_include_directories
	target_compile_options
	target_compile_definitions
	INTERFACE Libraries
	Importing / Exporting
	Imported Targets
	Imported Targets
	Exporting Targets
	Conditional Includes
	Generating Export Package
	Generating Export Package
	Exporting Targets
	CMake 3.8: CUDA
	INSTALL RULES
	Install Rules
	Install Rules
	Using Config Modules
	CMake Scripts
	OBJECT Libraries
	Ctest
	Automatic Testing Benefits
	Video of ParaView Nightly Testing
	Testing with CMake	
	CTest
	CTest
	GoogleTest integration
	Static Analysis
	CDash
	Slide Number 55
	CDash Dashboard www.cdash.org
	CDash works with other CI tools
	Search for relevant results
	Compare results across systems
	Track test timing
	CDash Subproject Support
	CDash Queries
	CDash Queries
	CTest Command Wrappers Output
	Coverage Display GCov/Bullseye
	Valgrind / Purify
	CDash Image Difference
	CPack
	What is CPack
	CPack Features
	Using CPack
	Now that you are inspired
	Slide Number 73

