
Modern CMake
Date: September 19, 2018
Presented by: Bill Hoffman (Kitware)

Bill Hoffman, Robert Maynard, Zack Galbreath, Chuck Atkins and Jamie Snape
contributed to the answers.

Q: Where can we get the video after the presentation?

A: https://www.exascaleproject.org/event/cmake/. A link will also be emailed to all
those that registered.

Q:Is it possible to create a release using cmake that an end-user can build without
having cmake on their system?

A: No, CMake is always required. The only requirement for CMake is however a C++
compiler. If you need the user to compile the project they will need to have CMake on
the system. If you want to provide binaries/libraries they can be provided without any
requirement on having CMake installed.

Q: Can you describe the differences between CMake and Bazel. I’ve used CMake. But I
am not familiar with Bazel. From what I heard it is like CMake, but I am not sure how
much their functionalities meet

A: Sure.

CMake: Supports a wide variety of platforms and compilers. CMake has a very active
open source community accepting of patches large and small. Has a backwards
compatibility system built into it with policies. Has a system for finding system installed
software and software built with CMake. Has a config system that allows even non
CMake based systems to specify targets to CMake. Qt is a good example of this.
Supports man IDE’s and workflows.

Bazel: Bazel has full support for Linux and Mac only with limited Windows support. It
has sandboxing. All inputs and outputs must be declared. Limited number of compilers
are supported. No built-in functionality for finding or using most system libraries. Better
caching of build artifacts (compared to CMake with Make/Ninja). Caching of test results.
Support for remote (distributed) caching of build artifacts and test results. Limited IDE

https://www.exascaleproject.org/event/cmake
https://www.exascaleproject.org/event/cmake/
https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html
http://doc.qt.io/qt-5/cmake-manual.html
https://blog.bazel.build/2015/09/11/sandboxing.html

support (IntelliJ tools and Xcode). Better Java/Go/Python support. Poor interfacing with
other build systems. Very unstable, no backwards compatibility at all. Very limited
open-source community. Difficult to get patches merged.
In summary, if you are building on platforms that Google is not interested in or have
problems that Google is not interested in they may never be addressed by Bazel.
CMake on the other hand is very interested in the HPC community, Fortran, and getting
many platforms working well.

Q: Can you recommend any good resources to get started with CMake? I find it quite
hard to find good tutorials.

A: [Robert Maynard] I think that Craig Scott book is excellent if you are happy with a
ebook. https://crascit.com/professional-cmake/

Other good community tutorials can be found at:

[Jamie Finney] Two good starter resources I used:

- https://rix0r.nl/blog/2015/08/13/cmake-guide/
- https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1

I liked CLion tutorial at https://www.jetbrains.com/help/clion/quick-cmake-tutorial.html
and integration.

If you want more hands on tutorials, kitware does offer training courses

Q: Where can I find concrete CMake "recipes" for moderately complex tasks that would
show me the best practices that I should be using? The documentation is quite
thorough, but very reference-like. I can usually find the functionality that I think I need in
the main CMake documentation, but the best way to use it and how it interacts with the
rest of the system are things that I have to end up searching the web.

A: See answer to previous question.

Q: Should the angle brackets around the INSTALL prefix be {} ?

A: Was this for the <INSTALL>/directory example? If so that means that the variable is
expanded as a generator expression, and not CMake configuration time. Basically you

https://crascit.com/professional-cmake/
https://rix0r.nl/blog/2015/08/13/cmake-guide/
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
https://www.jetbrains.com/help/clion/quick-cmake-tutorial.html

can think of generator expressions as deferring evaluation of something until execution.
You can find more information on the concept of generator expressions at:

- https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#build-spe
cification-with-generator-expressions

- https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

Q: I have 40-core system. How do I configure in parallel? (My builds are already
parallel)

A: Currently CMake is single threaded only, so we aren’t able to configure in parallel.
[Q: what kind of configure times are you currently seeing?]
A: I configure for a minute or more and build in seconds on 36 cores (Skylake). I was
thinking to use cmake -E <magic_command> to make that faster (but I might be
heading the wrong direction)
A: No CMake language and command constructs would need work to handle parallel
configurations.

Q: Is there a nice built-in facility for regression tests that does the output comparison
automatically?

A: [Robert Maynard] As far as I remember CMake out of the box only offers regex / and
error code handling to determine if a test fails. I will have to ask Bill once he is done if it
offers other ways. I know that VTK handles image regression comparisons as part of
the test driver and not as part of CMake. There is an undocumented feature in ctest
that is used to get image differences to CDash. You can read about that here
https://stackoverflow.com/questions/50719666/upload-image-diff-using-ctest-and-cdash/
50760569#50760569.

Q: Is there a difference in functionality between include(CTest) and enable_testing()?

A: enable_testing is a subset of include(CTest). So include(CTest) brings in more things
like the BUILD_TESTING option. It also sets up the extra targets for CDash like Nightly,
Experimental, Coverage builds (if i remember correctly)

Q: Our project can be linked with a few different math libraries (blas, openblas, mkl,
essl, etc), are there built-in ways to test for libraries/compile options? I’ve done a set of
if()s but that’s bulky. Just looking for suggestions/best practices.

https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#build-specification-with-generator-expressions
https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#build-specification-with-generator-expressions
https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html
https://stackoverflow.com/questions/50719666/upload-image-diff-using-ctest-and-cdash/50760569#50760569
https://stackoverflow.com/questions/50719666/upload-image-diff-using-ctest-and-cdash/50760569#50760569

A: Are you looking for a way to detect which math library the user has selected. Or are
you looking to test some options with that library. For the second you can look at the
CheckCXX modules (
https://cmake.org/cmake/help/v3.12/manual/cmake-modules.7.html) Maybe something
like: https://cmake.org/cmake/help/v3.12/module/CheckCXXSymbolExists.html

Follow-up Q: A technique that I’d like to do is create a list of libraries that work
with the project and then check to see if I can link against those, using the first
one that works (unless specified by the user). That is a technique that seems to
have worked when doing an autoconf style script in the past and I’d like to
replicate that if it’s possible.

Follow-up A: You can do this with iterating a list of libraries (using foreach) and
using try_compile to see which ones works.

Q: when can we expect next cdash release?

A: October 31, 2018

Q: How do I let other projects know what I need as deps for headers, libs, flags. Etc.?
For example, I found “librare.so” in an obscure location and it’s now required to link
against it. How does the user that links my library know what to do without repeating my
effort to find “librare.so”?

A: You could create your own export target for it. Obviously that would only work on the
computer where you built your software, so might not work with CPack.

Q: How is Cmake compared to other build tools such as SCons and GNU Autotools?

A: This is a good article on that topic: https://lwn.net/Articles/188693/

Q: Have you noticed CMake builds being significantly larger than the autotools? In
HDF5 the difference is enormous. Not sure if that's inherent to CMake or a problem with
our build scripts.

Autotools: 230 MB
CMake 3.3 GB

https://cmake.org/cmake/help/v3.12/manual/cmake-modules.7.html
https://cmake.org/cmake/help/v3.12/module/CheckCXXSymbolExists.html
https://cmake.org/cmake/help/v3.12/command/foreach.html
https://cmake.org/cmake/help/v3.12/command/try_compile.html#try-compiling-source-files
https://lwn.net/Articles/188693/

^^^ Size of build directory. Same build options. Not a debug/release difference. Both are
debug.

A: Large in which manner? Binary size / build directory? I would recommend checking
the build options of cmake with a build line with ‘make VERBOSE=1’. That order of
magnitude smells like a debug build instead of a release build
Send an email to: robert.maynard@kitware.com, and bill.hoffman@kitware.com .
Cmake shouldn’t have any influence on the library size, so some logic in HDF5 must be
causing different command line invocations of the compiler

-- Will do. Thanks!

[Chuck Atkins] It's also possible (I'd say even likely) that the autotools build is stripping
the installed binaries while the CMake build leaves them unstripped. Try to use “make
install/strip” and see if the resulting installed files are much smaller.

Q: Any good books about CMake? “Mastering CMAKE” seems dated and doesn’t cover
“modern CMAKE”.

A: I think that Craig Scott book is excellent if you are happy with a ebook.
https://crascit.com/professional-cmake/

Q: What is the difference between compile features and compile options?

A: in general compile features is what we name c++ language level features that are
from different c++ levels (11, 14, 17, …). Compile options are for general compile flags
to the compiler.

Q: Question from The HDF Group: Are you developing any tools to help with
cross-compilation on HPC systems? Thank you!

A: We are working with the SPACK team for better cmake integration into HPC builds.
However, this might not answer your question. Can you give more specific details as to
the HPC systems you are building for and what your issues are?

Q: I currently work on a project that cannot yet use Cmake as the build system, but we
love using CDash. I currently do it by spoofing the Test.xml file with a script, which is
very hacky. Is there a better way to do this?

mailto:robert.maynard@kitware.com
mailto:bill.hoffman@kitware.com
https://crascit.com/professional-cmake/

A: We are working with SPACK to make this work better. You can use CTest for this,
but if you don’t want to do that we are working on a CDash API that should make this
easier in the future. If you are interested in this we would be interested in helping to
move this type of feature forward. Please contact bill.hoffman@kitware.com and we
can see how we can help.

Q: Any advice for dealing with antiquated CMake build systems? For example I have a
multi-physics project that I am working on with a requirement to build on Windows, and
Linux. Some of the software dependencies include SEACAS-Exodus and CGNS (and
their dependencies). It seems that CGNS won't compile with MSVS with Fortran
bindings enabled using Intel IVF/ifort and MSVC. (Also it took some searching to get a
version of HDF5 that CGNS would compile and link against.) Then SEACAS-Exodus
uses a very unix centric bash script to handle their dependencies, which includes
NetCDF4 built against HDF5. A super build was defined to reduce tight coupling, but it
seems that the CGNS CMake build system is not robustly cross platform (at least for
Fortran support) and then shared dependencies and use of custom written find modules
in SEACAS-Exodus further complicate compilation on windows. If the upstream
dependencies used modern CMake with packageConfig.cmake files then this likely
would not have been an issue (or less of an issue). Any tips for dealing with this
dependency hell and upstream software writing and packaging custom find modules?

A: A superbuild would be the way to go. You can use that to constrain the problem and
know where depends will be installed into your build tree or built. When you find
packages that are not robust for the platform you need, in the long run it is better to fix
them and then contribute upstream. There is no magic CMake bullet to fix this.
However, Kitware can be contracted to help clean up the build if you have the funding
for that. The approach we would take would be to fix things up and get those fixes
upstream if possible or maintain patches if not.

Q: What is the best way to deal with differences between CMake versions? (Cmake 3.0
does not support what Cmake 3.12 supports. For example, C99 detection and handling
of -std=c99)

A: In general the goal is that CMake is backwards compatible so CMake 3.12 will be
able to behave like CMake 3.0. This is done through the cmake_minimum_required
command which needs to be at the top of your project (basically the first line in your
CMakeLists.txt before the first project() command). If you need to rely on things like
C99 detection you can specify a minimum cmake version. If you want to gracefully
degrade support that is possible, and you can find the cmake version with

mailto:bill.hoffman@kitware.com

`CMAKE_VERSION`:
https://cmake.org/cmake/help/v3.8/variable/CMAKE_VERSION.html

Q: if I have a CMake build system now, how soon do I have to update it from older
CMake to New CMake?

A: Depends on what you need to build. Some projects will have a minimum cmake
version, for which you will need to have at least that cmake version. It is possible to
have several versions of cmake installed on a system if you do the installation yourself.
Since CMake is backwards compatible you could keep it with old CMake for as long as
you like. After time you will likely get warnings and the recommended fix is to update
your code to the new style.

Q: What hardware resources are needed for parallel testing, for example for ParaView?

A: So let me clarify quickly what we mean by parallel testing. In general that simply
means that CMake will run N number of tests in parallel where N is provided by the
user. It provides ways to describe if tests have setup or teardown (aka fixtures,
https://crascit.com/2016/10/18/test-fixtures-with-cmake-ctest/), or if tests need to be run
serially, or if a test itself uses multiple cores (MPI) and should be scheduled as using
M (from N).

Now paraview for the hardware capabilities to run the tests are basically the following:

- The ability to spawn a rendering window (onscreen, offscreen or egl)
- Have more than 1 core

That is about it. The CMake buildsystem will enable all the tests related to the features
that are enabled in the build. if you disabled the ParaView client, you will just run the
tests related to the server component.

As far as MPI tests go, it uses a pretty low MPI count and just tests locally.

When using MPI in tests you can use this test property:
https://cmake.org/cmake/help/v3.0/prop_test/PROCESSORS.html

That can allow ctest -j to not overload the machine by running tests that use more than
one processor as if they only use one processor.

https://cmake.org/cmake/help/v3.8/variable/CMAKE_VERSION.html
https://crascit.com/2016/10/18/test-fixtures-with-cmake-ctest/
https://cmake.org/cmake/help/v3.0/prop_test/PROCESSORS.html

Do that answer your question?

