
Software Sustainability - lessons learned from different disciplines
Date: August 8, 2018
Presented by: Neil Chue Hong (Software Sustainability Institute)

Q. Concerning the reluctance of developers or PIs in sharing their software, it could be
related to putting professional reputation at risk or lack of funding. Sharing as a funding
criterion might help. Could you comment on that?

A. I personally think this is a good idea. We have seen an increase in the sharing of
publications and data since directives around open access and open data / data
management plans have been implemented in the UK, and I believe similar
approaches would help for software. However as well as the “stick”, there needs
to be the “carrot” and we need to provide incentives for sharing as part of funding
frameworks, perhaps by increasing the scoring of proposals (in the engagement
and impact categories) who have solid research output management plans that
include the publishing of software and code (as well as other research outputs).

Q. What about hiring software engineers and training them in the necessary science?

A. I think this is a valid approach, particularly in larger organisations and teams. I
think there’s a broad spectrum of people who work on the “coding” side of
research. At one end, there’s researchers who “dabble” or “hack” code and at the
other end there’s software engineers contracted in to provide specific skill sets in
a larger research software project. In between, there’s an opportunity for
software engineers to be trained not just in the necessary science, but more
importantly in the scientific process and research methods. Anecdotally, the
trickiest thing is getting software engineers used to the different workflow in
research, although this will depend on their background - it is not dissimilar to
particular software development models.

Q. Follow on to first question. Do you believe that such codes should be copy-left open
source licensed to enforce sharing? Would that be beneficial or harmful?

A. I personally believe that codes should be permissive rather than copy-left as I
think the lowering of barriers to reuse is more important that enforcing sharing.
The other issue is that typically the enforcement of sharing is quite hard if
someone contravenes it and you don’t have a good legal team behind you. So
whilst this might work for PIs and research project leaders at larger institutions,

https://www.exascaleproject.org/event/softwaresustainability

for those at smaller ones they may have no effective way of enforcing the terms
of a copy-left license. This article by Jake VanderPlas gives a good summary of
the pros and cons of each approach for different sizes of projects:
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scie
ntific-code/

Q. I agree that educating our peers in sustainable practices is a vital need. Do you
have any advice for groups comprised of senior members who have domain expertise
and junior members who have computer science training? Bi-directional knowledge
transfer across generational divides and through disciplinary ontologies is quite
challenging. Have the survey's captured these cultural and disciplinary dynamics?

A. The surveys that the SSI and our collaborators are just starting to understand the
cultural and disciplinary dynamics. In terms of disciplines, one thing that is clear
is that each discipline has people and groups who are heavily invested in
software, and in computational and data approaches. The differences are around
how these people and groups are regarded by the rest of the discipline: are they
embraced, seen as heretical, or tolerated with either scepticism or fear that they
will become the norm and others will have to retrain.
Generational divides are more interesting. Certainly an issue that has been
picked up from our surveys is that supervisors are ambivalent about trying out
new software tools or processes. A common question is “if the existing approach
worked for me, why do we need to change it?” however this is starting to get
pushed back because of the prominence given to the “reproducibility crisis” in the
popular press. What we see, delving a little deeper, is that at all levels there are
those willing to embrace new approaches to research to help get ahead and
there are those who once they get to a certain level are happy to continue
without radically changing again. If the evidence from our Fellowship programme
is anything to go by, the champions for better software come from across many
generations, ranging from those just starting to embark on a PhD career to
decades in post Professors.
So what advice can I give to help bridge divides? I think the main thing is to focus
on the benefits that using good software techniques will bring to the research that
a group is doing, from making it easier to change papers on the day of
submission and increasing the number of collaborators and citations your work
gets, to making it easier to on-board new members of your research group and
tackling larger and more complex research questions.

http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/

