
 

Jupyter in HPC

Matthias Bussonnier

bussonniermatthias@gmail.com
GitHub: @carreau
Twitter: @mbussonn

Feb 28th, 2018

1

About Me •A Physicist/Bio-Physicist

•Core developer of IPython/Jupyter since 2012

•Co-founder, and Steering Council member

•Post doctoral Scholar on Jupyter at BIDS

Matthias Bussonnier

2

Webinar
&

Outline

• This webinar will be in 3 parts

•Overview of what is Jupyter + HPC

•Use case : Suha Somnath

•Use case : Shreyas Cholia

•Outline Part 1

• From IPython to Jupyter

•What is Jupyter

• Jupyter Popularity

• Some Jupyter Usage

3

• 2001: Fernando Perez Wrote “IPython”

•Create IPython for Interactive Python with prompt number, gnu

plot integration

• Replace a bunch on perl/make/C/C++ files with only Python.

• 2011: QtConsole

• 2012: Birth of current Notebook (6th prototype)

•Make IPython “network enabled”

•Made possible by mature web tech.

• 2013: First non-Python (Julia) kernel

• 2014: we renamed the Python-Agnostic part to Jupyter.

• 2018: several millions users & JupyterLab released

From
IPython to

Jupyter

4

•Mainly Known for The Notebook

•Web server, a web app, load .ipynb (json), containing

code, narrative, math and results.

•Attached to a Kernel doing computation.

• Results can be:

• Static (Image)

• Interactive (client-side scoll/pan/brush)

• Dynamic (Call back into Kernel)

What is Jupyter

5

• IPython was designed for exploratory programming, as

a REPL (Read Eval Print Loop) and grew popular, especially

among scientist who loved it to explore.

Focused on Exploratory Programming

“IPython have weaponized the tab [completion] key”
– Fernando Pérez

6

•Organisation with Open Governance (https://GitHub.com/jupyter/governance)

• Funded by Grants and Donations, and Collaborations

Open Organisation

7

https://GitHub.com/jupyter/governance

• Jupyter is also a set of Protocols and Formats that reduce the N-frontends × M-

backends problem to a M-Frontends + N-backends,

• Open, Free and Simple.

• JSON (almost) everywhere

•Notebook document format,

•Wire protocol

• Thought for Science and Interactive use case.

•Results embedded in documents no "Copy past" mistake.

• Scale from Education to HPC jobs.

Protocols and Formats

8

Frontends: Notebook, JupyterLab, CLI, Vim, Emacs, Visual
Studio Code, Atom, Nteract, Juno...

Kernels: Python, Julia, R, Haskell, Perl, Fortran, Ruby, Javascript, C/
C++, Go, Scala, Elixir... 60+

Building Blocks: Nbformat, JupyterHub, Kernel Gateway...

Ecosystem

9

• Extends the notebook interface

with text editor, shell, ...etc

• is it and IDE ?

• If by I you mean Interactive,

then yes

JupyterLab

10https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906

https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/18a9793b58ba86660b5ab964e1aeaf7324d667c8?urlpath=lab/tree/demo/Lorenz.ipynb
https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906

Popularity

https://github.com/parente/nbestimate 11

Popularity

•Coding is not the end goal of most of our users. A simple,

single tool, with friendly interface helps.

•Persisting kernel state allows to iterate only on part of an

analysis.

•Notebook interface give the interactivity of the REPL with the

edit-ability and linearity of a script with intermediate result.

Aka "Literate Computing”

Interactivity

12

Popularity

•Computation, narrative/visualisation in different processes.

• Robust to crashes

•Can "Share" and analysis / notebook without having to “rerun"

• Trustworthy (No copy-past issues).

•Cons:

•Understanding that document/kernel can have different states

can be challenging.

•Notebook format is not as widespread as others.

Separation of states

13

Popularity

• User love fancy colors and things moving. Using D3 and other

• dynamic libraries are highly popular

• Usable by novices and power-users

• Users w/ different expertise (Numerical Methods, Visualization,...)

• Seamless transition to HPC: Kernel Menu > Restart on Cluster

• Document persist if code crash.

• Can be Zero-Installation (See JupyterHub).

• A web browser is all you need.

Network enabled / web based

14

•Multi-users Jupyter deployment

•Not (Yet) Realtime collaboration

• Each user can get their own process/version(s)/

configuration(s)

•Hooks into any Auth

•Only requires a browser

•Not limited to running Jupyter (e.g. work with RStudio,

OpenRefine...)

JupyterHub

15

Use Cases

•Batch Jobs

• You can run notebook “headless”

• Parametrized notebook as “reports” you can interact with later

• Interactive Cluster.

• Run a Hub (hook into LDAP/PAM...)

• Run notebook servers on a Head node

• Run Kernels on head Node/fast queue

• Extra Workers (e.g. dask) on Batch queue/cluster.

HPC

16

Some Jupyter
Usage

Ligo

Pangeo

Cern’s SWAN

17

• Some events analysis with Jupyter

• Subset of data + env put online

•Run the analysis yourself on Binder[1] and listen to the waves

Ligo

[1] https://github.com/minrk/ligo-binder18

https://beta.mybinder.org/v2/gh/minrk/ligo-binder/master?filepath=index.ipynb

• Effort from Atmosphere / Ocean / Land / Climate (AOC) science

community

•unified effort

•Cloud based

•Recent Technologies

•Dask, Jupyter

Pangeo (pangeo-data.github.io)

19Matt Rocklin Blog post on pangeo-data.github.io

• Share platformed for Data Analysis

• Sync W/ $HOME directory

•0-install

• Share Data

•Provide example gallery with 1-click-

fork

Cern Swan (swan.web.cern.ch)

20

21

CFP- Ends March 6th

Question(s)
 while we change

speakers ?

22

ORNL is managed by UT-Battelle
for the US Department of Energy

Jupyter for
Supporting a
Materials Imaging
User Facility
(and beyond)

Suhas Somnath

Advanced Data and Workflows Group,

Oak Ridge Leadership Computing Facility

2

Opportunities in Computing

• Numerical simulations already very popular

• Data analytics is growing

– Plenty of simulation data

– Numerous analytics software including ORNL’s own:

• Parallel Big Data with R (pbdR)

• Spark on Demand ….

• Experimental / Observational data:

– Few large / mature facilities already invested in analytics

– Plenty of opportunities in other facilities too

• Case Study – Imaging / Microscopy / Materials characterization

• Enough information-rich, structured, observational data to

complete simulation-experiment feedback loop

3

Opportunities in Microscopy

• Multiple file formats
– Multiple data structures
– Incompatible for correlation

• Disjoint and unorganized
communities
– Similar analysis but reinventing the

wheel
– Norm: emailing each other scripts,

data

• No proper analysis software
– Instrumentation software is woefully

inadequate
– No central repository, version control

• Closed Science
– Analysis software, data not shared
– No guarantees on reproducibility

Kalinin et al., ACS Nano, 9068-9086, 2015

Evolution of Scanning Probe
Microscopy Data

• Growing data sizes & dimensionality
– Cannot use desktop computers for

analysis

4

From 0 to Data Exploration on HPC

Instrument Tier

Data ready for interactive
visualization + analysis on HPC

5

From 0 to Data Exploration on HPC

Instrument Tier

Automated + standardized +
modularized data acquisition

Instrument-independent + self-
describing data formatting

Centralized hub / repository for
data pre-processing, analysis

Data ready for interactive
visualization + analysis on HPC

6

Open-source python package for analyzing + formatting

microscopy data

Universal Data Format
• Instrument-independent format

• HDF5 files for scalable storage

• HDF5 hierarchical structure

leveraged for traceability

Instrument agnostic code
• Single version of (reusable) analysis routine

• Brings multiple microscopy fields together

SPM

Multispectral

imaging

STM I-V

spectroscopy

STEM

ptychography

Decomposition

FFT filtering

Clustering

Functional fitting

Conveying information
• Interactive jupyter

notebooks

From

instrument

Translators

Igor ibw,

Band-

excitation,

STEM…

.ibw

.mat

.dat

.h5
.3ds

.txt

Analysis

Processing

Visualization

IO

pycroscopy

Pycroscopy

7

Supporting User Research
Before 2016 Since 2016

Scripts + complicated, monolithic, Matlab
GUI

Set of simple Jupyter notebooks

Witten by dedicated software engineer Written by material scientists

Not customizable on-the-fly Completely customizable.

2-3 hours of training before use Instructions embedded within notebook. NO
training required!

Deployed only on two offline workstations
due to licensing restrictions = queue

Each user gets VMs with jupyter notebook
server

Will remain on off-line desktops In the process of switching to computations
on clusters, and then HPC

+

8

Truly Achieving Open Science, Reproducibility

Aim – ALL scientific journal papers
accompanied with:
• Jupyter notebook that shows all

analysis (raw data à figures).
• Data with DOI number

DOI associated with data (raw à paper figures)

Jupyter notebook associated with paper

9

Scientific Advancements with Jupyter
Denoising and

clustering to identify
superconductivity at

the nanoscale

Simplified navigation multidimensional data - users
Identifying invisible patterns
using multivariate analysis

3,500x faster imaging via
adaptive signal filtering,

linear unmixing of signals

200x faster
spectroscopy via

Bayesian inference

10

Completing a Discovery Paradigm

SIMULATION
OBSERVATION

Enough information-rich, well-structured, observational data to complete
simulation-experiment feedback loop

11

Scaling this approach to the lab

(Cloud + Cluster)

….
Institute for Functional
Imaging of Materials

pyEM
?

Electron
Microscopy

12

Acknowledgements

Pycroscopy Team:
• Stephen Jesse
• Chris R. Smith

IFIM members:
• Sergei V. Kalinin
• Stephen Jesse
• Rama K. Vasudevan

Analytics Team:
• Junqi Yin
• Arjun Shankar

CADES Group:
• OpenStack team
• SHPC Condo team
• Arjun Shankar

Jupyter @
NERSC

Tales From a
Supercomputing Center

Shreyas Cholia, Rollin Thomas,
and Shane Canon

IDEAS Webinar
February 28 2018

Cori: Friendly for “Data Users”

● Two architectures in one system:
○ Data 2388 nodes 32-core Intel Xeon “Haswell” 128 GB DDR4
○ HPC 9688 nodes 68-core Intel Xeon Phi “KNL” 96 GB DDR4 + 16 GB MCDRAM

● Haswell login and special-purpose large memory nodes (512 & 768 GB)

● NVRAM Burst Buffer for IO acceleration

● Shared and real-time queues

● Shifter for containerized HPC

Gerty Cori: Biochemist and first American woman to win a Nobel Prize in science

Enter Jupyter

Diagram courtesy of “Farcaster” at English Wikipedia

● Jupyter Notebooks: Literate Computing, “Narratives”

○ Code and comments: Reproducibility, show your work! Document
your workflow

○ Rich text, plots, equations, widgets, etc.

○ Iterate and explore to arrive at meaningful insights

Central Role of Python at NERSC

Python is the most popular language at NERSC used to:

● Script workflows for both data analysis and simulations

● Perform exploratory data analysis

Motivation For Jupyterhub Service

❌ Users running their own notebook servers on a
supercomputer makes security folks very nervous.

❌ Difficult to support and manage different kernels and
environments

Jupyterhub to rescue

✓ Centralized service to deploy notebooks in a standard
authenticated manner

✓ Package known kernels out of the box (Anaconda)

✓ Access to NERSC resources through this interfaces

● Filesystems, Batch Queue, Network, DBs

Jupyterhub: Jupyter as a Service

●

●

Jupyter@NERSC
Evolution of Architecture

Step 1: Give people
access to their data

First Architecture: “Edge Service”

August 2015:
● Single Docker container with access to

NERSC Global File System
● Very popular service: 100+ users
● Missing:

○ Access to Cori Lustre Scratch
○ Interactivity with Cori batch queues
○ Cori Python environment.

Projects:
OpenMSI
Metabolite Atlas
LUX
...

Jupyter@NERSC
Evolution of Architecture

Step 2: Integration with
Cori compute and
filesystems

Second Architecture: Cori Login Node

August 2016:
● Standalone Hub server in Docker
● SSH spawner spins up notebook on

special-purpose Cori login node
● Access to Cori Lustre Scratch
● Same Python environment as Cori login
● Interactivity with batch queues

Projects:
LSST
DESI
MaterialsProject
 …

Our Extensions to JupyterHub

jupyterhub.auth.Authenticator

GSIAuthenticator
https://github.com/NERSC/GSIAuthenticator

SSHSpawner

jupyterhub.spawner.Spawner

https://github.com/NERSC/sshspawner

● Use MyProxy to login to NERSC
CA server with user/pass to get
X509 certificate credentials.

● No need to run JupyterHub with
additional privileges, or root access.

● SSH to Cori with user’s credential.
Uses GSISSH, but can use SSH.

● Notebook starts up, spawner goes
away, Notebook communicates
w/Hub, keep PID.

https://github.com/NERSC/GSIAuthenticator
https://github.com/NERSC/sshspawner

GSI Authenticator

●

● J

●

https://github.com/NERSC/gsiauthenticator

SSH Spawner

●

○
○

●

○
●

●
●

https://github.com/NERSC/SSHSpawner

SLURM MAGIC

● Jupyter “%magic” commands:
○ Expose extra-language functionality
○ Outputs are first-class Notebook objects

● Developed wrappers around SLURM commands.
https://github.com/NERSC/slurm-magic

● %squeue

%squeue -u rthomas
● %sbatch

%sbatch script.sh
● %%sbatch

%%sbatch -N 1 -p debug -t 30 -C haswell
#!/bin/bash
srun ...

https://github.com/NERSC/slurm-magic

Enable Custom Kernels

● Users customize their notebooks with libraries and APIs
of their own design or from third parties.

● NERSC wants to offer Jupyter to users so they don’t
set it up themselves in an insecure way.

Example PyROOT Kernel Spec

Jupyter@NERSC
Evolution of Architecture

Step 3: The Future

Next: Cori Compute Nodes

Web Browser JupyterHub
Web Server

Cori Login Node

Notebook
Server Process

Kernel
Process

Cori Compute Node

Notebook
Server Process

Kernel
Process

Cori Compute Node

Notebook
Server Process

Cori Compute NodeCori Compute NodeCori Compute Node

Kernel
ProcessKernel

ProcessKernel
Process

--qos=interactive

Role of Software Defined Networking

Web Browser

Cori Login Node

Notebook
Server Process

Kernel
Process

Cori Compute Node

Notebook
Server Process

Kernel
Process

Cori Compute Node

Notebook
Server Process

Cori Compute NodeCori Compute NodeCori Compute Node

Kernel
ProcessKernel

ProcessKernel
Process

SDN lets you
advertise an IP
back from compute
nodes to Jupyter
once the job starts.

Kale: Human-in-the-loop HPC

Project Kale is a research effort focused on
adapting the Jupyter machinery for HPC workflows

● Master notebook to control workflow
● Jupyter notebooks as interactive workflow steps
● Interaction with workflow tasks via kernels
● Realtime Monitoring of HPC jobs and output
● Widgets and dashboards for batch job management

The Ultimate Jupyter@NERSC

Software defined networking
Advertise IP of notebook server back to user.
Notebook on login node, kernel on compute.
Notebook+kernel on login, Spark job on computes.

Leveraging interactive QOS
Immediate access to compute up to four hours.

Docker/Shifter
Customize notebook/kernel’s environment through
containers.
Make larger-scale analytics apps actually start up.

Other possibilities
Notebook/scheduler on Haswell, kernels on KNL?

Acknowledgements

Big Thanks to the Community!

● MSI
● TACC
● SDSC
● Jupyter Dev Team

What Our Users Say

…

	Bussonnier Jupyter_v2.pdf
	Somnath_Jupyter_V02.pdf
	Cholia-Jupyter-v2.pdf

