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Introduction



Performance Models and Tools
§ Identify performance bottlenecks
§ Motivate software optimizations
§ Determine when we’re done optimizing

• Assess performance relative to machine capabilities
• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures
• Sets realistic expectations on performance for future procurements
• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 

computational needs of today’s applications.
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Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies 

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effectively latency hiding has resulted in a shift from a latency-limited 
computing regime to a throughput-limited computing regime
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Roofline Model
§ The Roofline Model is a throughput-

oriented performance model…
• Tracks rates not time
• Augmented with Little’s Law

(concurrency = latency*bandwidth) 
• Independent of ISA and architecture

(applies to CPUs, GPUs, Google TPUs1, etc…)

§ Three main components:
• Machine Characterization (realistic performance 

potential of the system)
• Monitoring (characterize application’s execution)
• Application Models (how well could my kernel perform 

with perfect compilers, procs, …)

61Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline



(DRAM) Roofline
§ Ideally, we could always attain 

peak Flop/s
§ However, finite locality (reuse) 

limits performance.
§ Plot the performance bound using 

Arithmetic Intensity (AI) as the x-
axis…
• Perf Bound = min ( peak Flop/s, peak GB/s * AI ) 
• AI = Flops / Bytes presented to DRAM 
• Log-log makes it easy to doodle, extrapolate 

performance, etc…
• Kernels with AI less than machine balance are 

ultimately memory bound.  
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Roofline Examples
§ Typical machine balance is 5-10 

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.166 flops per byte == Memory bound
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TRIAD
#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}



Roofline Examples
§ Conversely, 7-point constant 

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.43 flops per byte == memory bound,

but 3x the flop rate
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}



Hierarchical Roofline
§ Real processors have multiple 

levels of memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ We may measure a bandwidth 
and define an AI for each level
• A given application / kernel / loop nest will thus have 

multiple AI’s
• A kernel could be DDR-limited…
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Hierarchical Roofline
§ Real processors have multiple 

levels of memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ We may measure a bandwidth 
and define an AI for each level
• A given application / kernel / loop nest will thus have 

multiple AI’s
• A kernel could be DDR-limited…
• or MCDRAM-limited depending on relative 

bandwidths and AI’s
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Data, Instruction, Thread-Level Parallelism…
§ We have assumed one can attain 

peak flops with high locality.
§ In reality, this is premised on 

sufficient…
• Use special instructions (e.g. fused multiply-add)
• Vectorization (16 flops per instruction)
• unrolling, out-of-order execution (hide FPU latency)
• OpenMP across multiple cores

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from memory-bound to 

compute-bound
• n.b. in reality, DRAM bandwidth is often tied to DLP and 

TLP (single core can’t saturate BW w/scalar code)
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Roofline using
ERT, VTune, and SDE



Basic Roofline Modeling
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Machine Characterization
Potential of my target system
• How does my system respond to 

a lack of FMA, DLP, ILP, TLP?
• How does my system respond to 

reduced AI (i.e. memory/cache 
bandwidth)?

• How does my system respond to 
NUMA, strided, or random 
memory access patterns?

• …

Application Instrumentation
Properties of my app’s execution
• What is my app’s real AI?
• How does AI vary with memory 

level ?
• How well does my app vectorize?
• Does my app use FMA?
• ...



How Fast is My Target System?
§ Challenges:

• Too many systems; new ones each year
• Voluminous documentation on each 
• Real performance often less than 

“Marketing Numbers”
• Compilers can “give up” on big loops
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§ https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ Empirical Roofline Toolkit (ERT)
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs
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Application Instrumentation Can Be Hard…
§ Flop counters can be broken/missing in production HW (Haswell)
§ Counting Loads and Stores is a poor proxy for data movement as they 

don’t capture reuse
§ Counting L1 misses is a poor proxy for data movement as they don’t 

account for HW prefetching.
§ DRAM counters are accurate, but are privileged and thus nominally 

inaccessible in user mode
§ OS/kernel changes must be approved by vendor (e.g. Cray) and the 

center (e.g. NERSC)
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Application Instrumentation
§ NERSC/CRD (==NESAP/SUPER) 

collaboration…
• Characterize applications running on NERSC 

production systems
• Use Intel SDE (binary instrumentation) to create 

software Flop counters (could use Byfl as well)
• Use Intel VTune performance tool (NERSC/Cray 

approved) to access uncore counters
• Produced accurate measurement of Flop’s 

and DRAM data movement on HSW and KNL
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http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)



Use by NESAP
§ NESAP is the NERSC KNL application readiness project.
§ NESAP used Roofline to drive optimization and analysis on KNL

• Bound performance expectations (ERT)
• Quantify DDR and MCDRAM data movement
• Compare KNL data movement to Haswell (sea of private/coherent L2’s vs. unified L3)
• Understand importance of vectorization

• Doerfer et al., "Applying the Roofline Performance Model to the Intel Xeon Phi Knights 
Landing Processor", Intel Xeon Phi User Group Workshop (IXPUG), June 2016.

• Barnes et al. "Evaluating and Optimizing the NERSC Workload on Knights 
Landing", Performance Modeling, Benchmarking and Simulation of High Performance 
Computer Systems (PMBS), November 2016.
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Roofline for NESAP Codes
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Need a integrated solution…
§ Having to compose VTune, SDE, and graphing tools worked correctly 

and benefitted NESAP, but …
§ …placed a very high burden on users…

• forced to learn/run multiple tools
• forced to instrument each routine in their application
• forced to manually parse/compose/graph the output

§ …still lacked integration with compiler/debugger/disassembly

§ CRD/NERSC wanted a more integrated solution…
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Break / Questions



Roofline vs.
“Cache-Aware” Roofline



There are two Major Roofline Formulations:
§ Original / DRAM / Hierarchical Roofline…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009 
• Defines multiple bandwidth ceilings and multiple AI’s per kernel
• Performance bound is the minimum of the intercepts and flops

§ “Cache-Aware” Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)
• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI

23

§ Why Does this matter?
• Some tools use the original Roofline, some use cache-aware == Users need to understand the differences
• Intel Advisor uses the Cache-Aware Roofline Model (alpha/experimental DRAM Roofline being evaluated)
• CRD/NERSC prefer the hierarchical Roofline as it provides greater insights into the behavior of the memory hierarchy  
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“Cache-Aware” RooflineRoofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities 
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size 
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to 
the L1 cache

§ AI is Flop:Bytes after being
filtered by lower cache levels

§ Memory/Cache/Locality effects 
are indirectly observed

§ Memory/Cache/Locality effects 
are directly observed

§ Requires static analysis or binary 
instrumentation to measure AI

§ Requires performance counters 
to measure AI



Example: STREAM
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with 

iteration i+delta for any delta. 

§ … leads to a DRAM AI equal to 
the L1 AI



Example: STREAM
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Example: 7-point Stencil (Small Problem)
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk ]

+ old[ijk-1      ]
+ old[ijk+1      ]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the 

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than 
the L1 AI



Example: 7-point Stencil (Small Problem)
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Example: 7-point Stencil (Large Problem)
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“Cache-Aware” RooflineRoofline
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Break / Questions



Intel Advisor:
Introduction and General Usage

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
included in mainline product releases. They may not be stable as they are prototypes incorporating
very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.



Intel Advisor
§ Integrated Performance Analysis Tool

• Performance information including timings, flops, and trip counts
• Vectorization Tips
• Memory footprint analysis
• Uses the Cache-Aware Roofline Model
• All connected back to source code

§ CRD/NERSC began a collaboration with Intel
• Ensure Advisor runs on Cori in user-mode
• Push for Hierarchical Roofline
• Make it functional/scalable to many MPI processes across multiple nodes
• Validate results on NESAP, SciDAC, and ECP codes

32
NESAP is NERSC’s KNL application readiness project
SciDAC is the DOE Office of Science’s Scientific Discovery thru Advanced Computing program
ECP is the DOE’s Exascale Computing Project



Intel Advisor (Useful Links)
Background
§ https://software.intel.com/en-us/intel-advisor-xe
§ https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature
§ https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems
§ http://www.nersc.gov/users/software/performance-and-

debugging-tools/advisor/

33



Using Intel Advisor at NERSC
§ Compile…

use ‘-g’ when compiling

§ Submit Job…
% salloc –perf=vtune <<< interactive sessions; --perf only needed for DRAM Roofline

–or-

#SBATCH –perf=vtune <<< batch submissions; --perf only needed for DRAM Roofline

Benchmark…
% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex <<< only needed for DRAM Roofline

% srun [args] advixe-cl -collect survey -no-stack-stitching -project-dir $DIR -- ./a.out [args]

% srun [args] advixe-cl -collect tripcounts -flops-and-masks -callstack-flops -project-dir $DIR -- ./a.out [args]

§ Use Advisor GUI…
% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex <<< only needed for DRAM Roofline

% advixe-gui $DIR
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Break / Questions



Intel Advisor:
Stencil Roofline Demo*

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
included in mainline product releases. They may not be stable as they are prototypes incorporating
very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.



7-point, Constant-Coefficient Stencil
§ Apply to a 5123 domain on a single NUMA node (single HSW socket)
§ Create 5 code variants to highlight effects (as seen in advisor)

ver0. Baseline: thread over outer loop (k), but prevent vectorization
#pragma novector // prevent simd

int ijk = i*iStride + j*jStride + k*kStride; // variable iStride to confuse the compiler

ver1. Enable vectorization
int ijk = i + j*jStride + k*kStride; // unit-stride inner loop

ver2. Eliminate capacity misses
2D tiling of j-k iteration space // working set had been O(6MB) per thread

ver3. Improve vectorization
Provide aligned pointers and strides

ver4. Force vectorization / cache bypass
__assume(jstride%8 == 0); // stride by variable is still aligned

#pragma omp simd, vector nontemportal // force simd; force cache bypass
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Cache-Aware Roofline
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Cache-Aware Roofline
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Cache-Aware Roofline
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Cache-Aware Roofline
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Cache-Aware Roofline
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DRAM Roofline*
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DRAM Roofline*
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DRAM Roofline*
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DRAM Roofline*
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DRAM Roofline*



Wrap up / Questions



Roofline/Advisor Tutorial at SC’17
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§ Sunday November 12th

§ 8:30am-12pm (half-day tutorial)
§ multi-/manycore focus



Intel Advisor (Useful Links)
Background
§ https://software.intel.com/en-us/intel-advisor-xe
§ https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature
§ https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems
§ http://www.nersc.gov/users/software/performance-and-

debugging-tools/advisor/
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