
Using the Roofline Model
and Intel Advisor

Samuel Williams
SWWilliams@lbl.gov

Computational Research Division
Lawrence Berkeley National Lab

Tuomas Koskela
TKoskela@lbl.gov

NERSC
Lawrence Berkeley National Lab

§ This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

§ Special Thanks to:
• Zakhar Matveev, Intel Corporation
• Roman Belenov, Intel Corporation

Acknowledgements

Introduction

Performance Models and Tools
§ Identify performance bottlenecks
§ Motivate software optimizations
§ Determine when we’re done optimizing

• Assess performance relative to machine capabilities
• Motivate need for algorithmic changes

§ Predict performance on future machines / architectures
• Sets realistic expectations on performance for future procurements
• Used for HW/SW Co-Design to ensure future architectures are well-suited for the

computational needs of today’s applications.

4

Performance Models / Simulators
§ Historically, many performance models and simulators tracked latencies

to predict performance (i.e. counting cycles)

§ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)
• HW stream prefetching (hardware speculatively loads data)
• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

§ Effectively latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

5

Roofline Model
§ The Roofline Model is a throughput-

oriented performance model…
• Tracks rates not time
• Augmented with Little’s Law

(concurrency = latency*bandwidth)
• Independent of ISA and architecture

(applies to CPUs, GPUs, Google TPUs1, etc…)

§ Three main components:
• Machine Characterization (realistic performance

potential of the system)
• Monitoring (characterize application’s execution)
• Application Models (how well could my kernel perform

with perfect compilers, procs, …)

61Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

(DRAM) Roofline
§ Ideally, we could always attain

peak Flop/s
§ However, finite locality (reuse)

limits performance.
§ Plot the performance bound using

Arithmetic Intensity (AI) as the x-
axis…
• Perf Bound = min (peak Flop/s, peak GB/s * AI)
• AI = Flops / Bytes presented to DRAM
• Log-log makes it easy to doodle, extrapolate

performance, etc…
• Kernels with AI less than machine balance are

ultimately memory bound.

7

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Memory-bound Compute-bound

Roofline Examples
§ Typical machine balance is 5-10

flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.166 flops per byte == Memory bound

8

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

TRIAD
#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

Roofline Examples
§ Conversely, 7-point constant

coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.43 flops per byte == memory bound,

but 3x the flop rate

9

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

7-point
Stencil

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk]

+ old[ijk-1]
+ old[ijk+1]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

Hierarchical Roofline
§ Real processors have multiple

levels of memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ We may measure a bandwidth
and define an AI for each level
• A given application / kernel / loop nest will thus have

multiple AI’s
• A kernel could be DDR-limited…

10

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Hierarchical Roofline
§ Real processors have multiple

levels of memory
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ We may measure a bandwidth
and define an AI for each level
• A given application / kernel / loop nest will thus have

multiple AI’s
• A kernel could be DDR-limited…
• or MCDRAM-limited depending on relative

bandwidths and AI’s

11

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Data, Instruction, Thread-Level Parallelism…
§ We have assumed one can attain

peak flops with high locality.
§ In reality, this is premised on

sufficient…
• Use special instructions (e.g. fused multiply-add)
• Vectorization (16 flops per instruction)
• unrolling, out-of-order execution (hide FPU latency)
• OpenMP across multiple cores

§ Without these, …
• Peak performance is not attainable
• Some kernels can transition from memory-bound to

compute-bound
• n.b. in reality, DRAM bandwidth is often tied to DLP and

TLP (single core can’t saturate BW w/scalar code)

12

Peak Flop/s

No FMA

No vectorization

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Roofline using
ERT, VTune, and SDE

Basic Roofline Modeling

14

Machine Characterization
Potential of my target system
• How does my system respond to

a lack of FMA, DLP, ILP, TLP?
• How does my system respond to

reduced AI (i.e. memory/cache
bandwidth)?

• How does my system respond to
NUMA, strided, or random
memory access patterns?

• …

Application Instrumentation
Properties of my app’s execution
• What is my app’s real AI?
• How does AI vary with memory

level ?
• How well does my app vectorize?
• Does my app use FMA?
• ...

How Fast is My Target System?
§ Challenges:

• Too many systems; new ones each year
• Voluminous documentation on each
• Real performance often less than

“Marketing Numbers”
• Compilers can “give up” on big loops

15

§ https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

§ Empirical Roofline Toolkit (ERT)
• Characterize CPU/GPU systems
• Peak Flop rates
• Bandwidths for each level of memory
• MPI+OpenMP/CUDA == multiple GPUs

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.quadflat.2t/Run.002)

2450.0 GFLOPs/sec (Maximum)

L1
 - 6

44
2.9

 G
B/s

L2
 - 1

96
5.4

 G
B/s

DRAM - 4
12

.9
GB/s

Cori / KNL

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100

G
FL

O
Ps

 /
se

c

FLOPs / Byte

Empirical Roofline Graph (Results.summitdev.ccs.ornl.gov.02.MPI4/Run.001)

17904.6 GFLOPs/sec (Maximum)

L1
 - 6

50
6.5

 G
B/s

DRAM - 1
92

9.7
 G

B/s

SummitDev / 4GPUs

Application Instrumentation Can Be Hard…
§ Flop counters can be broken/missing in production HW (Haswell)
§ Counting Loads and Stores is a poor proxy for data movement as they

don’t capture reuse
§ Counting L1 misses is a poor proxy for data movement as they don’t

account for HW prefetching.
§ DRAM counters are accurate, but are privileged and thus nominally

inaccessible in user mode
§ OS/kernel changes must be approved by vendor (e.g. Cray) and the

center (e.g. NERSC)

16

Application Instrumentation
§ NERSC/CRD (==NESAP/SUPER)

collaboration…
• Characterize applications running on NERSC

production systems
• Use Intel SDE (binary instrumentation) to create

software Flop counters (could use Byfl as well)
• Use Intel VTune performance tool (NERSC/Cray

approved) to access uncore counters
• Produced accurate measurement of Flop’s

and DRAM data movement on HSW and KNL

17

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’s Computational Research Division
NESAP is NERSC’s KNL application readiness project
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute)

Use by NESAP
§ NESAP is the NERSC KNL application readiness project.
§ NESAP used Roofline to drive optimization and analysis on KNL

• Bound performance expectations (ERT)
• Quantify DDR and MCDRAM data movement
• Compare KNL data movement to Haswell (sea of private/coherent L2’s vs. unified L3)
• Understand importance of vectorization

• Doerfer et al., "Applying the Roofline Performance Model to the Intel Xeon Phi Knights
Landing Processor", Intel Xeon Phi User Group Workshop (IXPUG), June 2016.

• Barnes et al. "Evaluating and Optimizing the NERSC Workload on Knights
Landing", Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), November 2016.

18

Roofline for NESAP Codes

19

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"
1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"2P
 H

SW
K

N
L

MFDn PICSAREMGeo

Need a integrated solution…
§ Having to compose VTune, SDE, and graphing tools worked correctly

and benefitted NESAP, but …
§ …placed a very high burden on users…

• forced to learn/run multiple tools
• forced to instrument each routine in their application
• forced to manually parse/compose/graph the output

§ …still lacked integration with compiler/debugger/disassembly

§ CRD/NERSC wanted a more integrated solution…

20

Break / Questions

Roofline vs.
“Cache-Aware” Roofline

There are two Major Roofline Formulations:
§ Original / DRAM / Hierarchical Roofline…

• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
• Defines multiple bandwidth ceilings and multiple AI’s per kernel
• Performance bound is the minimum of the intercepts and flops

§ “Cache-Aware” Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)
• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a lower one at constant AI

23

§ Why Does this matter?
• Some tools use the original Roofline, some use cache-aware == Users need to understand the differences
• Intel Advisor uses the Cache-Aware Roofline Model (alpha/experimental DRAM Roofline being evaluated)
• CRD/NERSC prefer the hierarchical Roofline as it provides greater insights into the behavior of the memory hierarchy

24

“Cache-Aware” RooflineRoofline
§ Captures cache effects§ Captures cache effects

§ Single Arithmetic Intensity§ Multiple Arithmetic Intensities
(one per level of memory)

§ AI independent of problem size§ AI dependent on problem size
(capacity misses reduce AI)

§ AI is Flop:Bytes as presented to
the L1 cache

§ AI is Flop:Bytes after being
filtered by lower cache levels

§ Memory/Cache/Locality effects
are indirectly observed

§ Memory/Cache/Locality effects
are directly observed

§ Requires static analysis or binary
instrumentation to measure AI

§ Requires performance counters
to measure AI

Example: STREAM

25

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ L1 AI…
• 2 flops
• 2 x 8B load (old)
• 1 x 8B store (new)
• = 0.08 flops per byte

§ No cache reuse…
• Iteration i doesn’t touch any data associated with

iteration i+delta for any delta.

§ … leads to a DRAM AI equal to
the L1 AI

Example: STREAM

26

“Cache-Aware” RooflineRoofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Multiple AI’s….
1) based on flop:DRAM bytes
2) Based on flop:L1 bytes (same)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes

Observed performance
is correlated with DRAM
bandwidth

Actual Performance is
the minimum of the two
intercepts

Example: 7-point Stencil (Small Problem)

27

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk]

+ old[ijk-1]
+ old[ijk+1]
+ old[ijk-jStride]
+ old[ijk+jStride]
+ old[ijk-kStride]
+ old[ijk+kStride];

}}}

§ L1 AI…
• 7 flops
• 7 x 8B load (old)
• 1 x 8B store (new)
• = 0.11 flops per byte
• some compilers may do register shuffles to reduce the

number of loads.

§ Moderate cache reuse…
• old[ijk] is reused on subsequent iterations of i,j,k
• old[ijk-1] is reused on subsequent iterations of i.
• old[ijk-jStride] is reused on subsequent iterations of j.
• old[ijk-kStride] is reused on subsequent iterations of k.

§ … leads to DRAM AI larger than
the L1 AI

Example: 7-point Stencil (Small Problem)

28

“Cache-Aware” RooflineRoofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes
Multiple AI’s….
1) flop:DRAM ~ 0.44
2) flop:L1 ~ 0.11

Observed performance
is between L1 and DRAM lines
(== some cache locality)

Actual Performance is
the minimum of the two

Example: 7-point Stencil (Large Problem)

29

“Cache-Aware” RooflineRoofline

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Peak Flop/s

At
ta

in
ab

le
 F

lo
p/

s

Arithmetic Intensity (Flop:Byte)

Single AI based on flop:L1 bytes
Multiple AI’s….
1) flop:DRAM ~ 0.20
2) flop:L1 ~ 0.11

Capacity misses reduce
DRAM AI and performance

Observed performance
is closer to DRAM line
(== less cache locality)

Break / Questions

Intel Advisor:
Introduction and General Usage

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
included in mainline product releases. They may not be stable as they are prototypes incorporating
very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.

Intel Advisor
§ Integrated Performance Analysis Tool

• Performance information including timings, flops, and trip counts
• Vectorization Tips
• Memory footprint analysis
• Uses the Cache-Aware Roofline Model
• All connected back to source code

§ CRD/NERSC began a collaboration with Intel
• Ensure Advisor runs on Cori in user-mode
• Push for Hierarchical Roofline
• Make it functional/scalable to many MPI processes across multiple nodes
• Validate results on NESAP, SciDAC, and ECP codes

32
NESAP is NERSC’s KNL application readiness project
SciDAC is the DOE Office of Science’s Scientific Discovery thru Advanced Computing program
ECP is the DOE’s Exascale Computing Project

Intel Advisor (Useful Links)
Background
§ https://software.intel.com/en-us/intel-advisor-xe
§ https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature
§ https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems
§ http://www.nersc.gov/users/software/performance-and-

debugging-tools/advisor/

33

Using Intel Advisor at NERSC
§ Compile…

use ‘-g’ when compiling

§ Submit Job…
% salloc –perf=vtune <<< interactive sessions; --perf only needed for DRAM Roofline

–or-

#SBATCH –perf=vtune <<< batch submissions; --perf only needed for DRAM Roofline

Benchmark…
% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex <<< only needed for DRAM Roofline

% srun [args] advixe-cl -collect survey -no-stack-stitching -project-dir $DIR -- ./a.out [args]

% srun [args] advixe-cl -collect tripcounts -flops-and-masks -callstack-flops -project-dir $DIR -- ./a.out [args]

§ Use Advisor GUI…
% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex <<< only needed for DRAM Roofline

% advixe-gui $DIR

34

35

36

37

38

39

40

41

Break / Questions

Intel Advisor:
Stencil Roofline Demo*

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
included in mainline product releases. They may not be stable as they are prototypes incorporating
very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.

7-point, Constant-Coefficient Stencil
§ Apply to a 5123 domain on a single NUMA node (single HSW socket)
§ Create 5 code variants to highlight effects (as seen in advisor)

ver0. Baseline: thread over outer loop (k), but prevent vectorization
#pragma novector // prevent simd

int ijk = i*iStride + j*jStride + k*kStride; // variable iStride to confuse the compiler

ver1. Enable vectorization
int ijk = i + j*jStride + k*kStride; // unit-stride inner loop

ver2. Eliminate capacity misses
2D tiling of j-k iteration space // working set had been O(6MB) per thread

ver3. Improve vectorization
Provide aligned pointers and strides

ver4. Force vectorization / cache bypass
__assume(jstride%8 == 0); // stride by variable is still aligned

#pragma omp simd, vector nontemportal // force simd; force cache bypass

44

45

46

Cache-Aware Roofline

47

Cache-Aware Roofline

48

Cache-Aware Roofline

49

Cache-Aware Roofline

50

Cache-Aware Roofline

51

DRAM Roofline*

52

DRAM Roofline*

53

DRAM Roofline*

54

DRAM Roofline*

55

DRAM Roofline*

Wrap up / Questions

Roofline/Advisor Tutorial at SC’17

57

§ Sunday November 12th

§ 8:30am-12pm (half-day tutorial)
§ multi-/manycore focus

Intel Advisor (Useful Links)
Background
§ https://software.intel.com/en-us/intel-advisor-xe
§ https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature
§ https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems
§ http://www.nersc.gov/users/software/performance-and-

debugging-tools/advisor/

58

§ This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

§ This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

§ This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

§ Special Thanks to:
• Zakhar Matveev, Intel Corporation
• Roman Belenov, Intel Corporation

Acknowledgements

