-1 BERKELEY LAB

EE

Using the Roofline Model
and Intel Advisor

Samuel Williams Tuomas Koskela

Computational Research Division NERSC
Lawrence Berkeley National Lab Lawrence Berkeley National Lab

rjh‘ m B E R K E L EY LA B f*“e U.S. DEPARTMENT OF
r & A _:
| (9! ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Acknowledgements

= This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

= This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-ACO02-
05CH11231.

= This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

= Special Thanks to:
« Zakhar Matveev, Intel Corporation
« Roman Belenov, Intel Corporation

S

rreererr

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

A ST%, U.S. DEPARTMENT OF
| BERKELEY LAB {0 ENERGY

Introduction

Performance Models and Tools

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

* Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

Performance Models /| Simulators

= Historically, many performance models and simulators tracked latencies
to predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

Out-of-order execution (hardware discovers parallelism to hide latency)
HW stream prefetching (hardware speculatively loads data)
Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= Effectively latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

Roofline Model

® 0 < 18 | = @Q @ crd.Ibl.gov & i} +‘

* The Roofline Model is a throughput-
oriented performance model...

* Tracks rates not time

 Augmented with Little’'s Law
i oanee - Roofline Performance Model

—_ | t * b d 1 d th ALGORITHMS
CO n C u rre n Cy - a e n Cy a n W I RESEARCH Roofline is a visually intuitive performance model used to bound the perf of various methods and running on
Research or i Rather than simply using percent-of-peak estimates, the model can be used to
AR frk assess the quality of attained by locality, idth, and different into a single
. Beaop o performance figure. One can examine the resultant Roofline figure in order to both the and inherent
 Ind dent of ISA and architect —
ndependent o and architecture = g
''''''' Arithmetic Intensity
. HPaua The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total fioating-point operations to
I t C P l ' (; P l | (; I | P l | 1 t Roofiine total data movement (bytes). A BLAS-1 vector-vector increment (x[i}+=y{i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
a p p I e S O S [S 3 O Og e S y e C "o SciDAC / 24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5°N*logN flops for a N-point double complex
TOP500 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
Previous Projects would have an arithmetic intensity of 0.104*logN and would grow siowly with data size. Unfortuantely, cache capacities would

limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have

* Three main components: G T

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A A

« Machine Characterization (realistic performance g
potential of the system)

* Monitoring (characterize application’s execution)

« Application Models (how well could my kernel perform L S
with perfect compilers, procs, ...)

Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017. 9) r:ml 'ﬁ

BERKELEY LAB

(DRAM) Roofline

= |deally, we could always attain

peak Flop/s I /
» However, finite locality (reuse) Peak Flopls L

limits performance.

= Plot the performance bound using
Arithmetic Intensity (Al) as the x-

axis...

Perf Bound = min (peak Flop/s, peak GB/s * Al)
Al = Flops / Bytes presented to DRAM

Log-log makes it easy to doodle, extrapolate
performance, etc...

Kernels with Al less than machine balance are
ultimately memory bound.

Attainable Flop/s

Memory-bound : Compute-bound
>

>

Roofline Examples

= Typical machine balance is 5-10
flops per byte...

40-80 flops per double to exploit compute capability Peak Flop/s

Artifact of technology and money

Unlikely to improve

= Consider STREAM Triad...

#pragma omp parallel for
for(i=0;1<N;i++){

Attainable Flop/s

z[i] = X[1] + alpha*Y[i];
}

2 flops per iteration
Transfer 24 bytes per iteration (read X[i], Y[i], write Z]i])
Al = 0.166 flops per byte == Memory bound

Roofline Examples

= Conversely, 7-point constant

coefficient stencil...
« 7 flops Peak Flop/s
« 8 memory references (7 reads, 1 store) per point "
« Cache can filter all but 1 read and 1 write per point E—
« Al =0.43 flops per byte == memory bound, E |
but 3x the flop rate 'cgs :
#pragma omp parallel for E§ :
for (k=1;k<dim+1;k++){ b ! | 7-D0i
For (31, j<dimil.ien | < ! | 7-point
for(i=1;i<dim+l;i++){ | 1 Stencill
int ijk = 1 + j*jstride + k*kstride; ! :
new[ijk] = -6.0%oT1d[ijk] , .
old[ijk-1] : | g
glﬂﬂgtjsmde} Arithmetic Intensity (Flop:Byte)

old[ijk+jStride]
old[ijk-kstride]
old[ijk+ksStride];

9 o

BERKELEY LAB

Hierarchical Roofline

= Real processors have multiple
levels of memory

Registers
L1, L2, L3 cache

MCDRAM/HBM (KNL/GPU device memory)
DDR (main memory)

NVRAM (non-volatile memory)

= We may measure a bandwidth
and define an Al for each level

A given application / kernel / loop nest will thus have
multiple Al's

A kernel could be DDR-limited...

Attainable Flop/s

10

Hierarchical Roofline

= Real processors have multiple
levels of memory

Registers

L1, L2, L3 cache

MCDRAM/HBM (KNL/GPU device memory)
DDR (main memory)

NVRAM (non-volatile memory)

= We may measure a bandwidth
and define an Al for each level

A given application / kernel / loop nest will thus have ! !
multiple Al's Arithmetic Intensity (Flop:Byte)

A kernel could be DDR-limited...

or MCDRAM-limited depending on relative
bandwidths and Al’s

Attainable Flop/s

11

Data, Instruction, Thread-Level Parallelism...

= \We have assumed one can attain
peak flops with high locality.

= In reality, this is premised on Peak Flop/s

sufficient... gl
Use special instructions (e.g. fused multiply-add) %
Vectorization (16 flops per instruction) ®
unrolling, out-of-order execution (hide FPU latency) é No vectorizati

OpenMP across multiple cores

= Without these, .

Peak performance is not attainable Arithmetic Intensity (Flop:Byte)

Some kernels can transition from memory-bound to
compute-bound

n.b. in reallty DRAM bandwidth is often tied to DLP and

12

>
]

/\ @\“T““-:,k U.S. DEPARTMENT OF
T Y

rrerrearnr | e:
2¥; ENERG

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline using
ERT, VTune, and SDE

Basic Roofline Modeling

Machine Characterization Application Instrumentation
Potential of my target system Properties of my app’s execution
 How does my system respondto + Whatis my app’s real Al?

a lack of FMA, DLP, ILP, TLP? How does Al vary with memory
 How does my system respond to evel ?

reduced Al (i.e. memory/cache » How well does my app vectorize?

bandwidth)?

 Does my app use FMA?
 How does my system respond to

NUMA, strided, or random
memory access patterns?

How Fast is My Target System?

Cori/ KNL

= Challenges:

 Too many systems; new ones each year

* Voluminous documentation on each

» Real performance often less than % oo | SummitDev / 4GPUs
“Marketing Numbers”

004.6.GELOPs/sec (Maximum)

« Compilers can “give up” on big loops .

= Empirical Roofline Toolkit (ERT)
« Characterize CPU/GPU systems
 Peak Flop rates

GFLOPs /
<

« Bandwidths for each level of memory

10

* MPI+OpenMP/CUDA == multiple GPUs e
= https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Application Instrumentation Can Be Hard...

* Flop counters can be broken/missing in production HW (Haswell)

= Counting Loads and Stores is a poor proxy for data movement as they
don’t capture reuse

= Counting L1 misses is a poor proxy for data movement as they don’t
account for HW prefetching.

= DRAM counters are accurate, but are privileged and thus nominally
inaccessible In user mode

= OS/kernel changes must be approved by vendor (e.g. Cray) and the
center (e.g. NERSC)

16

Application Instrumentation

= NERSC/CRD (==NESAP/SUPER) S p—
collaboration... ey S

MEASURING ARITHMETIC INTENSITY

Arithmetic intensity is a measure of ficating-point operations (FLOPS) performed by a given code for :occu:mlm.rmlamo
amount of memory accesses (Bytes) that are requined to support those operations. It is most often defined as a FLOP per Byte
/8). Thit note provides a for arithmetic intensty using In! mwm
Emulator Toolkit (SDE) and VTune Ampiifier (VTune) lm!sAMr.vul using SDE on Eamwbc found here, and a tutorial
on using VTune can be found here. This method can aiso be used to determine arithmetic intensity for use in the Roofline
Porformance Mogel.

« Characterize applications running on NERSC
production systems

« Use Intel SDE (binary instrumentation) to create
software Flop counters (could use Byfl as well)

* Use Intel VTune performance tool (NERSC/Cray .

« -d spocifies to only collect dynamic profile information

2l Y, Processor have for FLOPs and/or Bytes and profiling tools 10 support the F/B
caiculation. such as ntel's vy Bricg in Edison) and Haswel (used in Corl Phase 1) do not
provide counters for FLOPs. However, Intel's SDE can be used to count floating-point instructions in addition to core-lovel
memory accesses, and VTune can be used to count data accesses 1o the uncore (off-chip DRAM DIMMS).

The SOE dynamic instruction tracing capabiity, and in particutar the mix histogram tool, captures dynamic instructions exscuted,
Instruction length, instruction category and ISA extension grouping. Intel has developed a methodology for calculating FLOPs
with SOE. In general the following uses the method “Instructions to Count Unmasied FLOP* from intel, which is appiicable for
Edison and Corl Phase 1

This appiication note provides additional instruction on how 10 only capture traces around certain key segments of a code. This is

critical for real appications as both SDE and VTune collect traces that can use larpe amounts of disk space i tracing is enabled for
more than a few minutes. And maybe more importantly, post-processing the traces can take an ntractable amount of time.

« -iform 1 tums on compute ISA iform mix

approved) to access uncore counters | T e

« -global_region will Incluce any threads spawned by a process (needed for OponMP)

- Produced accurate measurement of Flop’s P et
and DRAM data movement on HSW and KNL

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL's production computing division

CRD is LBL's Computational Research Division "’}l .ﬂ
NESAP is NERSC’s KNL application readiness project 17

LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) CERIGH LD

Use by NESAP

= NESAP is the NERSC KNL application readiness project.

= NESAP used Roofline to drive optimization and analysis on KNL
* Bound performance expectations (ERT)
e Quantify DDR and MCDRAM data movement

 Compare KNL data movement to Haswell (sea of private/coherent L2’s vs. unified L3)
« Understand importance of vectorization

« Doerfer et al., "Applying the Roofline Performance Model to the Intel Xeon Phi Knights
Landing Processor”, Intel Xeon Phi User Group Workshop (IXPUG), June 2016.

« Barnes et al. "Evaluating and Optimizing the NERSC Workload on Knights
Landing", Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), November 2016.

2P HSW

KNL

GFLOP/s

GFLOP/s

Roofline for NESAP Codes

MFDn

10000
1000
«===Roofline Model
100 = >wo/FMA
. il 1RHS
10 \ 4 RHS
¢ 8 RHS
1 T T 1
0.01 0.1 1 10
Arithmetic Intensity (FLOP/byte)
10000
1000
«===Roofline Model
100 = *wo/FMA
ikl 1 RHS
10 \ 4 RHS
¢ 8 RHS
1 T T 1
0.01 0.1 1 10

Arithmetic Intensity (FLOP/byte)

EMGeo

10000
1000 ===Roofline Model
£ = =wo/FMA
g 100 i Original
(0] A SELL
10 & SB
1 <4 SELL+SB
0.1 1 10 © nRHS+SELL+SB
Arithmetic Intensity (FLOP/byte)
10000
1000 ===Roofline Model

£ = *wo/FMA
Q 100 - i Original
6 A SELL
10 o SB
1 | | < SELL+SB
0.1 1 10 © nRHS+SELL+SB

Arithmetic Intensity (FLOP/byte)

19

GFLOP/s

GFLOP/s

10000

1000

100

10

1

10000

1000

100

10

1

PICSAR

«e==Roofline Model

= =wo/FMA
i Original

» w/Tiling
¢ w/Tiling+Vect

0.1 1 10

Arithmetic Intensity (FLOP/byte)

«e==Roofline Model

= =wo/FMA
i Original

\J . w/Tiling
¢ w/Tiling+Vect

0.1 1 10

Arithmetic Intensity (FLOP/byte)

-~

Frrerreer

.ﬂ

BERKELEY LAB

Need a integrated solution...

= Having to compose VTune, SDE, and graphing tools worked correctly
and benefitted NESAP, but ...

= ...placed a very high burden on users...

forced to learn/run multiple tools
forced to instrument each routine in their application
forced to manually parse/compose/graph the output

= _..still lacked integration with compiler/debugger/disassembly

» CRD/NERSC wanted a more integrated solution...

20

S

rreererr

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

A ST%, U.S. DEPARTMENT OF
{ BERKELEY LAB (0 ENERGY

Break / Questions

| BERKELEY LAB

EEE

Roofline vs.
“Cache-Aware” Roofline

There are two Major Roofline Formulations:

= QOriginal / DRAM / Hierarchical Roofline...

« Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
* Defines multiple bandwidth ceilings and multiple Al's per kernel
« Performance bound is the minimum of the intercepts and flops

= “Cache-Aware” Roofline

 llic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
Defines multiple bandwidth ceilings, but uses a single Al (flop:L1 bytes)
 As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant Al

= Why Does this matter?

« Some tools use the original Roofline, some use cache-aware == Users need to understand the differences
* Intel Advisor uses the Cache-Aware Roofline Model (alpha/experimental DRAM Roofline being evaluated)
« CRD/NERSC prefer the hierarchical Roofline as it provides greater insights into the behavior of the memory hierarchy

23 il

BERKELEY LAB

Roofline “Cache-Aware” Roofline

= Captures cache effects = Captures cache effects

= Al is Flop:Bytes after being = Alis Flop:Bytes as presented to
filtered by lower cache levels the L1 cache

= Multiple Arithmetic Intensities = Single Arithmetic Intensity
(one per level of memory)

= Al dependent on problem size = Al independent of problem size

(capacity misses reduce Al)
= Memory/Cache/Locality effects = Memory/Cache/Locality effects

are directly observed are indirectly observed
» Requires performance counters = Requires static analysis or binary
to measure Al instrumentation to measure Al

24

Example: STREAM

= L1 AlI... #pragma omp parallel for
° 2ﬂ0ps 'FOI"('I=0;'I<N;'I++){

z[1] = X[1] + alpha*Y[1];

2 x 8B load (old) }
1 x 8B store (new)

= 0.08 flops per byte
= No cache reuse...

lteration i doesn’t touch any data associated with
iteration i+delta for any delta.

= ... leads to a DRAM Al equal to
the L1 Al

Example: STREAM

Roofline “Cache-Aware” Roofline
,T

Peak Flop/s Peak Flop/s

Obseryved performance
IS 9orrelated with DRAM
bandwidth

ActuaI/Performance IS
the/minimum of the two
intercepts

Attainable Flop/s
Attainable Flop/s

«—— Multiple Al’s....

| 1) based on flop:DRAM bytes «— Single Al based on flop:L1 bytes

I 2) Based on flop:L1 bytes (same) . J =Y

I > 1 >
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

26 el

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

O |_1 Al o #pragma omp parallel for
for(k=1;k<dim+1;k++){
* [fiops for(j=1;j<dim+1;j++){
7 x 8B load (old) for(i=1l;i<dim+1;i++){
int ijk = 1 + j*jstride + k*kstride;
1 x 88 store (new) new[i1jk] = -6.0%01d[jk]
= 0.11 flops per byte old[ijk-1]
some compilers may do register shuffles to reduce the old[1jk+1]
number of loads. old[1jk-Jjstride]
old[1jk+jStride]
= Moderate cache reuse... o1d[1jk-kstride]

old[1jk+kStride];

old[ijk] is reused on subsequent iterations of i,j,k

old[ijk-1] is reused on subsequent iterations of i.
old[ijk-jStride] is reused on subsequent iterations of j.

old[ijk-kStride] is reused on subsequent iterations of k.

= ... leads to DRAM Al larger than
the L1 Al

Example: 7-point Stencil (Small Problem)

Roofline “Cache-Aware” Roofline
,T

Peak Flop/s Peak Flop/s

Observe/d performance
IS bet}veen L1 and DRAM lines
some cache locality)

x>

lctual Performance is
the minimum of the two

Attainable Flop/s
Attainable Flop/s

! Multiple Al’s....

«— 1) flop:DRAM ~ 0.44
— 2) flop:L1 ~ 0.11

I >

Example: 7-point Stencil (Large Problem)

Roofline “Cache-Aware” Roofline
,T

Peak Flop/s Peak Flop/s

Observe/d performance
is closer to DRAM line

Capacity misses reduce 1&ss cache locality)

PRAM Al and performance

. Multiple Al’s....
'«—— 1) flop:DRAM ~ 0.20
: 2) flop:L1 ~ 0.11

' >

Attainable Flop/s
Attainable Flop/s

S

rreererr

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

A ST%, U.S. DEPARTMENT OF
{ BERKELEY LAB (0 ENERGY

Break / Questions

EEEEEEEEEEEEE

= A S U.S
™ BERKELEY LAB (0 ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Intel Advisor:

Introduction and General Usage

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
Included in mainline product releases. They may not be stable as they are prototypes incorporating

very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.

Intel Advisor

» |ntegrated Performance Analysis Tool
« Performance information including timings, flops, and trip counts
* Vectorization Tips
 Memory footprint analysis
 Uses the Cache-Aware Roofline Model
* All connected back to source code

= CRD/NERSC began a collaboration with Intel

* Ensure Advisor runs on Cori in user-mode

« Push for Hierarchical Roofline

« Make it functional/scalable to many MPI processes across multiple nodes
« Validate results on NESAP, SciDAC, and ECP codes

NESAP is NERSC’s KNL application readiness project
SciDAC is the DOE Office of Science’s Scientific Discovery thru Advanced Computing program 32
ECP is the DOE’s Exascale Computing Project

Intel Advisor (Useful Links)

Background

= https://software.intel.com/en-us/intel-advisor-xe

= https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature

= https://www.youtube.com/watch?v=h2QEM1HpFqgg

Running Advisor on NERSC Systems

= http://www.nersc.qov/users/software/performance-and-
debugqging-tools/advisor/

< i @ g software.intel.com

Vectorization and Threading are Crucial to Performance

On modem processors, it is becoming crucial 1o both vectorize (use AVX” or SIMD" instructions)
and thread software to realize the full performance potential of the processor. In some cases, code
that is vectorized and threaded can be up to 187X faster than unthreaded/iunveclorized code—and
about 7X faster than code that is only threaded or vectorized. And that gap is growing with every
new processor generation

e

B
L
Binomial Options Per Sec. SP
(Migher is Better)

Site Map | My NERSC | < Share

Threaded plus vectorized can be much faster than either ane alone. The gap is grd
new hardware goneration. Detals

Job Logs & Statistios.
Training & Tutorisls
Software

User Environment

Using Shifter and Docker
Al Software List
Agpications

Complers

Programming Modsls
Version Control Tools

Intef® Advisor gives you data o forecast the performance gain before you invest sl
in implementation. Implement only the options that have a high retum on investme|

Data-Driven Vectorization Optimization and Threading Desig|

Programming Libraries

Perdormance and Debugaing

You need good data to make good design decisions. What loops should be thready Tools
vectorized first? Is the performance gain worth the effort? Will the threading pecfort oor

targer core counts? Does this loop have a dependency that prevents

trip counts and memory access pattems? Have | vectorized efficiently with the late 1

1 using older SIMD instructions? STAT and ATP

€C08 and ip>

Vectorization Optimization: Guidance to Speed up your Appli

Home « For Users = Software = Performance and Debugging Tools « Advisor

ADVISOR

Introduction
Intel Advisor peovides two workflows 10 help ensure that Fortran, C and Cee TABLE OF CONTENTS
applications can make the most of today's processors: 1. Introduction

2. Using lntel Advisor on Edison and
Cort

 Vectorization Advisor identifies loops that will benefit most from vectorization,
speciies what &5 biocking effective vectorzation, finds the benefit of alemative
o and increases the that s safe.

2. Some Important command Line
Options for Intel Advisor

4. Using the Advisor GUI

5. Roofline tool on Corf

« Threading Advisor is used for threading design and prototyping and 10 andyZe, g, Downdoads.
design, tune, and check threading design Options without disrupting normal
code development,

For more Intel Advisor visit vis

Back o Top
Using Intel Advisor on Edison and Cori

To launch Advisor, the Lustre Filo System should be used instead of GPFS. Either the command line tool, *advixe~ci® or the GUI
can be sed. We recommend you 1o use the command ine 100, “Inspxe-cl’, to collect data via batch jobs, and then Gispiay
resuits using the GUI, “nspxe-gui®, on a login node on Edison.

Compiling Codes to Run with Advisor

Additional Compiler
In order 1o compie the coce 10 work with Adviscr, some additional flags need 10 be used.

Cray Compiler Wrapper {ftn, cc, CC)

When using the Cray compller wrappers to compile codes 10 work with Advisor, the '-g’ and the -cynamic’ flags should be used.
1t is recommended that 8 minimum optimzation level of 2 shouk! be used for compiing codes that will be analyzed using intel
Advisor, To compile a C code for MP1 as well as OpenMP, use the following command:

Here, the -g option is needed 10 assist Advisor to associate sddresses 1o source lines, and the -dynamic option is needed o buikd
dynamically linked applications with the compler wrappers on Edison (the compler wrappers, fin, cc, and CC, link applcations
statically by defau).

Without the the folowing eror ted:

i % module load advisor]
I % cc -g -openmp -0 mycode.exe mycode.c :
D% srun -n 1 -c 8 advixe-cl --collect survey --project-dir ./myproj -- ./mycode.exe :
: advixe: Ercor: Binary file of the analysis target does not contain sysbols required for profilic

~
Frerrrr o

BERKELEY LAB

Using Intel Advisor at NERSC

= Compile...

use ‘-g’ when compiling

= Submit Job...

% salloc
O r' —
#SBATCH

Benchmark...

% module load advisor

% srun [args] advixe-cl -collect survey -no-stack-stitching -project-dir $DIR -- ./a.out [args]

% srun [args] advixe-cl -collect tripcounts -flops-and-masks -callstack-flops -project-dir $DIR -- ./a.out [args]

= Use Advisor GUI...

% module load advisor

% advixe-gui $DIR

-~

34 cecee

BERKELEY LAB

[NN NoMachine - NERSC |
() /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2> ~) ®

File View Help

Welcome ¥

@ Getting Started

(Intel Advisor 2017

Vectorization Optimization and Thread Prototyping

Current project: advi.stencil.aug2.16

» Show My Result New Project...

Configure Project... Open Project...

S

i Open Result

Recent Projects:

> advi.dram.stencil.aug2.16

A
u||

BERKELEY LAB

Frreerrrs

® @ NoMachine - NERSC
&) /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2> ~ @)

File View Help

‘ Welcome | €000 (read-only) .

i | Elapsed time: 50.50s |¥ | RURVEGTOTyFL=0| Not Vectorized

FILTER:| All Modules ~|| All Sources ~ | ‘ INTEL ADVISOR 2017

@ Summary % Survey & Roofline ¥ Refinement Reports

& Program metrics

Elapsed Time 50.50s
Vector Instruction Set AVX Number of CPU Threads 16
Total GFLOP Count 753.95 Total GFLOPS 14.93

Total Arithmetic Intensity @ 0.12

& Loop metrics

Total CPU time 806.22s [N 100.0%
Time in 5 vectorized loops 641.62s NG 79.6%
Time in scalar code 164.60s [20.4%

& Vectorization Gain/Efficiency
Vectorized Loops Gain/Efficiency ® 3.81x [[95% s
Program Approximate Gain © 3.23x

® Top time-consuming loops®

Loop Self Time® Total Time® Trip Counts®
" [loop in bench_stencil_ver2ompparallel_for@102 at stencil v2.c:108] 160.035s 160.035s 31;3;2;3

" [loop in bench_stencil_ver3ompparallel_for@146 at stencil_v2.c:152] 159.953s 159.953s 32; 2

" [loop in bench_stencil_ver4ompparallel for@193 at stencil v2.c:201] 159.595s 159.595s 130

" [loop in bench_stencil_verlompparallel for@62 at stencil v2.c:65] 159.307s 159.307s 31;3;2;3

@& Advixe-qui 3 | 2 emacs-gtk@cori05-bond0.224

~

n/rh 'ﬁ

BERKELEY LAB

® @ NoMachine - NERSC
& O /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2> ®E ®

File View Help

"m e000 (read-only) -
im | Elapsed time: 50.50s |¥ |ReRYEIEGINFI=0 Not Vectorized

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~ 7 INTEL ADVISOR 2017
@ Summary % Survey & Roofline @ Refinement Reports »

§ = HuElenE s & | ¥Vector Issues Self Time |Total Time

o) Loops GFLOPS ~

- (B# [loop in bench_stencil verd$... 159.595s1|159.595sJ|Vectorized (Body)

= :# " [loop in bench_stencil_ver3$... @ 1 Ineffective peeled/... 159.953sH 159.953sHl Vectorized (Body; Re... 162740 0.117

“[loop in bench_stencil ver2%...
" [loop in bench_stencil_verl$...
=6 [loop in bench_stencil_ver0% ...

@ 1 Ineffective peeled/... 160.035sH 160.035sHl Vectorized (Body; Peel... 15.662 T 0.117
@ 1 Ineffective peeled/... 159.307sHl 159.307sHl Vectorized (Body; Peel... 10.218 01 0.117
@ 1 Potential underutil... 157.994sH 157.994sHl Scalar 9.0093 0.117

000D

Source | Top Down | Code Analytics | Assembly | v Recommendations | & Why No Vectorization?

Lin. Source Total Time | % Loop/Function Time | % Traits

1U5 OT{LLE=w; LLLE<] T LLEeSTKT LIS LLIe+FF){ U.ULDS|

104 int kLo = 16*(tile/jTiles);

105 int jLo = 16*(tile%jTiles);

106 for(k=kLo;k<kLo+16; k++){ 0.008s I

107 for(j=jLo;j<jLo+16; j++){ 0.092s|

108 for(i=0; i<dim; i++){ 1.500s’ 160.035s mmmm

109 int ijk = 1 + j*jStride + k*kStride;

110 new[ijk] = -6.0%old[1ijk 1 26.216sl FMA
- _ Selected (Total Time): 1.500s

.. 1" | | ﬁ Advixe-qui

~

e 5 e Ty .1 T = =
A vcori05-bond0.224 Ccorl.:
3 7 freeeee 'ﬂ

BERKELEY LAB

® @ NoMachine - NERSC
& O /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2> ~ @)

File View Help

‘ Welcome | €000 (read-only) v
im | Elapsed time: 50.50s |¥ |ReRYEIEGINFI=0 Not Vectorized
FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~ 7 : INTEL ADVISOR 2017
@ Summary % Survey & Roofline @ Refinement Reports g
- - " FLOPS
3 = HuElenE s & | ¥Vector Issues Self Time |Total Time |Type
o) Loops GFLOPS ~ Al
o “[loop in bench_stencil ver4...| [] 159.595sH 159.595sHl Vectorized (Body) 23.083 0.117
= :#0 [loop in bench_stencil ver3...| [J @1 Ineffective peeled/... 159.953sHl 159.953sHl Vectorized (Body; Re... 16.274Em@ 0.117
[loop in bench_stencil ver2...| [J @1 Ineffective peeled/... 160.035sH 160.035sHl Vectorized (Body; Peel... 15.662 0.117
[loop in bench_stencil verl...| [] @1 Ineffective peeled/... 159.307sH 159.307sHl Vectorized (Body; Peel... 10.218 &0 0.117
6 [loop in bench_stencil_v... 1 Potential under... |157.994s[|157.994s[]|Scalar

" Source Top Down | Code Analytics | Assembly | ¥+ Recommendations | @ Why No Vectorization?

FLOPS
Function Call Sites and Loops Total Time % | Total Time |SelfTime |Type

GFLOPS

= INTERNAL 26 src_z Linux_util cpp 2d702c13::[OpenM| 93.8% I 755.843s 0.000s[Function 0.998

Bl logp i _INTERNAL X8 5rg 2 INTERNAL 26 SIC Z_ Llnux util cpp 2d702c13: [OpenMP worker] 0.998

= __kmp_launch_thread 5.0 70 s | D).0455 U.UUUSL T UlNCcLion 0.998

=S [loop in __kmp launch_thread at kmp_runtime.cpp:565) 93.8% I 755.843s 0.000s[Scalar 0.998

=[OpenMP dispatcher] 93 3% 7/52.000s 0.000s! Function 1.003

#bench_stencil ver2$omp%$parallel for@102 18.7%H 150.903s 0.120sl Function 1.083

#bench_stencil ver3$omp%$parallel for@146 18.7% N 150.471s 0.000s[Function 1.097

#bench_stencil verdompparallel for@193 18.6% M 149.989s 0.000s[Function 1.540

H - (A ATATA T Lot ioan Nn_cnG

.. - ﬁAdlee-QUI

~

n/r:ﬁ 'ﬂ

BERKELEY LAB

[NN NoMachine - NERSC
&) /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2>) (o))

File View Help

’ Welcome | €000 (read-only)

i | Elapsed time: 50.50s |¥ | RURVEGTOTyFL=0| Not Vectorized

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~ INTEL ADVISOR 2017

@ Summary % Survey & Roofline @ Refinement Reports 4
| : i FLOPS

3 = HuElenE s & | ¥Vector Issues Self Time |Total Time |Type

S Loops GFLOPS » Al

— |EE [loop in bench_stencil verd...| [] 159.595sH 159.595sHl Vectorized (Body) 23.083 0.117

= :#0 [loop in bench_stencil ver3...| [J @1 Ineffective peeled/... 159.953sHl 159.953sHl Vectorized (Body; Re... 16.274Em@ 0.117
[loop in bench_stencil ver2...| [J @1 Ineffective peeled/... 160.035sM 160.035sHl Vectorized (Body; Peel... 15.662 0.117
[loop in bench_stencil verl...| [] @1 Ineffective peeled/... 159.307sH 159.307sHl Vectorized (Body; Peel... 10.218 Iy 0.117
=6 [loop in bench_stencil_v...| [] ¢1 Potential under... 157.994sl 157.994s M Scalar 9.009[™ 0.117
L}

" Source Top Down | Code Analytics ’ Assembly |@ Recommendations |E Why No Vectorization? |

Loop i Average Trip Counts: 512 © GFLOPS: 9.00873 ©

bench_stencil_verOompparallel for...
at stencil _v2.c:29

Instruction Mix" ® Code Optimizations ®
(5 157.994s Memory:5 Compute:9 Mixed : Compiler: Intel(R) C Intel(R) 64
n 4 Other:4 Number of Vector Compiler for applications running on
Scalar Total time Registers: 9 Intel(R) 64,
157.994s Version: 17.0.2.174 Build 20170213

Qalf tima

& Advixe-qui

~

BERKELEY LAB

| NON NoMachine - NERSC
&) /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2> =) (o))

File View Help

’ Welcome | €000 (read-only) v
i | Elapsed time: 50.50s |¥ | RURVEGTOTyFL=0| Not Vectorized
FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~ INTEL ADVISOR 2017
@ Summary % Survey & Roofline @ Refinement Reports g
| : - | " 'FLOPS
3 = HuElenE s & | ¥Vector Issues Self Time |Total Time |Type
S Loops GFLOPS » Al
— |EE [loop in bench_stencil verd...| [] 159.595sH 159.595sHl Vectorized (Body) 23.083 0.117
= :#0 [loop in bench_stencil ver3...| [J @1 Ineffective peeled/... 159.953sHl 159.953sHl Vectorized (Body; Re... 16.274Em@ 0.117
#5 [loop in bench_stencil_ver2...| [@1 Ineffective peeled/... 160.035sH 160.035sHl Vectorized (Body; Peel... 15.662 0.117
#H [loop in bench_stencil verl...| [@1 Ineffective peeled/... 159.307sHl 159.307sHl Vectorized (Body; Peel... 10.218 0 0.117
=6 [loop in bench_stencil_v...| [] ¢1 Potential under... 157.994sl 157.994s M Scalar 9.009[™ 0.117

" Source Top Down | Code Analytics | Assembly | ¥ Recommendations | &8 Why No Vectorization?

] Address |Lin. Assembly | TotaITime‘ % ‘ Self Time | % | Traits |
body ; 0x401690 Block 1: |
0x401690 34 wvmovsdq (%rbp,%rdx,8), %xmml 0.996s | 0.996s |
0x401696 31 leal (%rl3,%rl2,1), %rlld 1.728s| 1.728s|
0x40169b 31 movsxd %rlld, %rll 1.008s| 1.008s|
0x40169e 29 1inc %rlod 1.794s’ 1.794s
0x4016al 36 wvmovsdq (%rbp,%rdi,8), %xmm2 0.944s| 0.944s|
0x4016a7 29 add %r8, %rdx 49.773s 1 49.773s |
0x4016aa 29 add %r8, %rdi 1.456s 1.456s
Selected (Total Time): Os
. ___J

& Advixe-qui

~

BERKELEY LAB

[NON | NoMachine - NERSC

&) /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2> =) (o))
File View Help
’ Welcome | €000 (read-only) .

i | Elapsed time: 50.50s |¥ | RURVEGTOTyFL=0| Not Vectorized

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~

@ Summary % Survey & Roofline @ Refinement Reports

4 Performance (GFLOPS) R]g‘ 5 | [Use Single-Threaded Roofs @ | [Show Hierarchical Data =
)
< 1000" T o1 e 1 e I f
i 5 T i _....----BPVector FMA Peak:-843.06 GFLOPS
01 GB'SF_"G.‘.- -.---—E""":‘-‘-"“"i_:;ﬁi.:?=E'":':::“‘“"f_'_j_‘_.‘:.-'-'-*}"'""“"—‘- """""" 'E; F‘,.‘V'-'-'E'""::::““"“_ """""""""" g
100- T b rr T p—— L LARE L Paki239.28 GFLBBS®
1 e,and"_‘,’.‘.»-h-’a" ol j'z?‘t'{?{*;_ &5 R BT e e i i R o e
10_\.’;_?’?{@?—0}""”_"502_16 QﬁJ?ﬁq--<-~5"' g Performance: 116.2 GFLOPS
3 pand 'vfiic.‘."‘:-»—---"'zg ok GEIEEE. . o™ Arithmetic Intensity: 0.16 FLOP/Byte v
e e S —————————. | -
1{pRAM Ba“dw\q“""' +
0.01 0.1 1 10
Self Elapsed Time: 10.004 s Total Time: 159.595 s Arithmetic Intensity (FLOP/Byte)
Source | Top Down | Code Analytics | Assembly | ¥+ Recommendations | @ Why No Vectorization?
Lin. Source Total Time | % ‘ Loop/Function Time | % ‘ Traits
FAVIVE Fpragma vec Lor rnormemporatc 1 1 J
201 for(i=0; i<jStride; i++){ | 3.636s 159.595s mmmm I
Selected (Total Time): 3.636s

& Advixe-qui

R — B = = T = B = =]
|] s N : 3 e 4
eMacs-gLKCOorito- * U224 corl .
4 1 rreerree

.ﬁ

BERKELEY LAB

S

rreererr

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

A ST%, U.S. DEPARTMENT OF
{ BERKELEY LAB (0 ENERGY

Break / Questions

EEEEEEEEEEEE

~ A S2 U.S.
™ BERKELEY LAB (0 ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Intel Advisor:

Stencil Roofline Demo*

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be
Included in mainline product releases. They may not be stable as they are prototypes incorporating

very new functionality. Intel provides preview features in order to collect user feedback and plans
further development and productization steps based on the feedback.

7-point, Constant-Coefficient Stencil

= Apply to a 5123 domain on a single NUMA node (single HSW socket)
= Create 5 code variants to highlight effects (as seen in advisor)

verO. Baseline: thread over outer loop (k), but prevent vectorization
#pragma novector // prevent simd
int ijk = i*iStride + j*jStride + k*kStride; // variable iStride to confuse the compiler

ver1. Enable vectorization

int 1jk = 1 + j*jStride + k*kStride; // unit-stride inner Tloop
ver2. Eliminate capacity misses

2D tiling of j-k iteration space // working set had been O(6MB) per thread
ver3. Improve vectorization

Provide aligned pointers and strides

ver4. Force vectorization / cache bypass
__assume(jstride%8 == 0); // stride by variable is still aligned
#pragma omp simd, vector nontemportal // force simd; force cache bypass

[JON) NoMachine - NERSC
& O /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2> Mo ®

File View Help

’ Welcome ‘ e000 (read-only) | —

im | Elapsed time: 50.50s |¥ | ReRVIaTodvI=l | Not Vectorized

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~
Summary % Survey & Roofline @ Refinement Reports
- . . ? . T.|. |FLOPS
o] [* =] Function Call Sites and Loops L] | Self Time 1 T
o GFLOPS~ Al Vector |...
= “[loop in bench_stencil verd$o... & 159.595sH 15.V. 23.083 0.117 AVX2
= :# [loop in bench_stencil_ver3so... [J] @1159.953sE15.V. 16274 0.117 AVX2
“[loop in bench_stencil ver2%o... (] ©1160.035sE16.V. 15.662 0.117 AVX2
#® [loop in bench_stencil_verl$o... (] ©1159.307sE15.V. 10.218mmm 0.117 AVX2
| - 157.994s[1| 1.S.

B@[loop in bench_stencil_vero0...

Source | Top Down | Code Analytics | Assembly | ¥ Recommendations | @ Why No Vectorization?

Lin. Source Total Time | % Loop/Function Time | % Traits
25 #pragma omp parallel for 9.890s1

26 for(k=1;k<dim+1;k++){

27 for(j=1; j<dim+1;j++){

28 #pragma novector

29 for(i=1;i<dim+l;i++){ 102.403s = 157.994s mmmm

30 int ijk = i*iStride + j*jStride + k*kStride;

31 new[ijk] = -6.0%*old[1ijk 1 53.651s FMA
32 + old[ijk-iStride]

Selected (Total Time): 102.403s

~

Frerrrr lﬂ

BERKELEY LAB

@ @ NoMachine - NERSC
& O /global/cscratchl/sd/tk

File View Help Cache-Aware Roofline

}7M[e000 (read-only) | .

i@ | Elapsed time: 50.50s |¥ Not Vectorized

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~

@ Summary % Survey & Roofline @ Refinement Reports

% Performance (GFLOPS) R]g‘ 5 | () Use Single-Threaded Roofs @ | [/ Show Hierarchical Data —
E 1000‘ - B e L et c-B------- -
it > ~__.---DPVector FMA Peak:-843.06 GFLOPS
GB'SBC_‘___ ..»—E"“"‘_"‘_‘--‘““‘_Y‘_‘J“j_‘_:‘—E‘::;:: ------ _‘:_—::::-‘B"""'—‘A“_—_"—“—‘"—“‘-.‘ ‘J—.-—E":f::-_--------. ------------------ i dadeds
100 o 551601 OB 0P Vagior Add Peaki39. 94 GFLORS?
1 gandWiv. 501 _‘2’7‘6_5_3[45 q = SR e R e S e e
Bty idths A2) -
pandW== plsec .-
101282 L e 0B
3 BandWio - o g5 GBISST.- , , =
I dwidth 2057 - bench_stencil_ver0ompparallel_for@25 stencil_v2.c:29 "
1| pRAM BEZ= Performance: 9.01 GFLOPS
| | L1 Arithmetic Intensity: 0.12 FLOP/Byte
0.01 'Rl Self Elapsed Time: 10.012 s 10
Self Elapsed Time: 10.012 s Total Time: 157.994 s Total Time: 157.994 s /Byte)

Source | Top Down | Code Analytics | Assembly | ¥ Recommendations | & Why No Vectorization?

Lin. Source Total Time | % Loop/Function Time | % Traits I
28 #pragma novector
29 for(i=1;i<dim+l;i++){ 102.403s mmm 157.994s mmmm

Selected (Total Time): 102.403s

& Advixe-gui

@ @ NoMachine - NERSC
& O /global/cscratchl/sd/tk

File View Help Cache-Aware Roofline

}7M[e000 (read-only) | .

i@ | Elapsed time: 50.50s |¥ Not Vectorized

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~

@ Summary % Survey & Roofline @ Refinement Reports

% Performance (GFLOPS) R]g‘ 5 | [Use Single-Threaded Roofs @ | [Show Hierarchical Data =
E 1000‘ T T e L e et = e -
b > __...-—-DP"Vector FMA Peak:-843.06 GFLOPS
GB'SB_?:____.»—EP““"‘_"‘_‘--‘““‘_Y‘_‘J“j_‘_i‘—E‘::;:: ------ _‘:_‘::::-‘B"""'—‘A“_—_"—‘"‘“-“.-.“J-JE"::::::‘—-“-“. “““““““““““““ ey
100 L L .- DPVectqr Add PRaki?49-38 GFLBRS®
1 Band_‘f_ﬁ’_‘ pgE 5801 _‘2’7‘6@5 S = R s o mal _“3 ““““““““““““““““““““““““““““““
; Adwidth L gec'?
10112 B2 g 16 GBISSE
- 3 Band_\f:‘!}q_ ‘._-___ ~ e 8 85 GBI%EC
R % dwidth 2005 - bench_stencil_veriompparallel_for@62 stencil_v2.c:65 ||
1| pRAM BEZ= Performance: 10.22 GFLOPS
| | L1 Arithmetic Intensity: 0.12 FLOP/Byte
0.01 'R Sclf Elapsed Time: 10.206 s 10
Self Elapsed Time: 10.206 s Total Time: 159.307 s Total Time: 159.307 s /Byte)
Source | Top Down | Code Analytics | Assembly | ¥ Recommendations | & Why No Vectorization?
Lin. Source Total Time | % Loop/Function Time | % Traits :
64 for(j=1; j<dim+1; j++){ 0.020s | l
65 for(i=1;i<dim+1; i++){ 0.684s 159.307s mmmm
Selected (Total Time): 0.684s

& Advixe-gui

@ @ NoMachine - NERSC

& () /global/cscratchl/sd/tk . 56 ®
File View_Help Cache-Aware Roofline
\ Welcome_’ e000 (read-only) X | -
@ | Elapsed time: 50.50s | ¥
FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~ INTEL ADVISOR 2017
@ Summary % Survey & Roofline @ Refinement Reports
% Performance (GFLOPS) R]g‘ 5 | [Use Single-Threaded Roofs @ | [Show Hierarchical Data =
E 1 000 T = T e - —m o m - ———m——mm—————— - —— B - - - - - - -
ot . __...---BPVector FMA Peak:-843706 GFLOPS
07 GB’S'E_‘.‘;: st B UL e o _‘;::-‘*El"""—‘_l‘r‘_ """"" ’D PVE’" it WSS e 3 =
100- 551601 8BS - DF Vadlr Add Ppaki239.35 GELBBS’
N R | = X R [ol P s e Bl e et e e e SR G B et S a2 g
pandW¥ L GBI it e s
ez et ideh: =
1012 Band i 5 16 GBISES
T ndwidth ' BlS
L3 Banafi- g.85C . . P
. Jwidth bench_stencil_ver2ompparallel_for@102 stencil_v2.c:108
1—9?;{5\ Lt Performance: 15.66 GFLOPS
| | L1 Arithmetic Intensity: 0.12 FLOP/Byte
0.01 01 EEl Elgpsed Time: 10.438 s
Self Elapsed Time: 10.438 s Total Time: 160.035 s Total Time: 160.035 s
Source | Top Down | Code Analytics | Assembly | ¥ Recommendations | & Why No Vectorization?
Lin. Source Total Time | % Loop/Function Time | % Traits |
107 ¥ for(j=jLo; j<jLo+16;j++){ 0.092s|
108 for(i=0;i=<dim; i++){ 1.500s 160.035s s
Selected (Total Time): 1.500s

& Advixe-gui

@ @
& O /global/cscratchl/sd/tk

File View Help

NoMachine - NERSC

Cache-Aware Roofline

}7Welcome ’ e000 (read-only) X | -
@ | Elapsed time: 50.50s | ¥
FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~ INTEL ADVISOR 2017
@ Summary % Survey & Roofline @ Refinement Reports
% Performance (GFLOPS) R]g‘ 5 | [Use Single-Threaded Roofs @ | [Show Hierarchical Data =
E 1 000 T B e e T e - —m o m - ———m——mm—————— - —— B - - - - - - -
ot . B __...---BPVector FMA Peak:-843706 GFLOPS
07 GBISE‘: —B""“"""‘_‘_‘,1‘_.‘.1:9”“:5:; ““““ _‘__'_".‘.‘:-"‘E]"'—:‘f “““““ 'DP’VE “““““ _ 2 ““““““““ 3
100- sl S .-~ DP Vactqr Add Ppaki219.95 GELOBS’
e L -
ST R TR i S
1o L2 BANEE= o 46 GBIseS
e widER P s
L3 Banaviiz g 85 GBl , : -
- a aidth: bench_stencil_ver3ompparallel_for@146 stencil_v2.c:152
1| pRAM BAZ=r= Performance: 16.27 GFLOPS
] | | L1 Arithmetic Intensity: 0.12 FLOP/Byte
0.01 "Rl Sclf Elapsed Time: 10.144 s
Self Elapsed Time: 10.144 s Total Time: 159.953 s Total Time: 159.953 s
Source | Top Down | Code Analytics | Assembly | ¥ Recommendations | & Why No Vectorization?
Lin. Source Total Time | % Loop/Function Time | % Traits l
151 for(j=jLo; j<jLo+16;j++){ 0.016s|
152 for(i=0; i<jStride; i++){ 0.708s 159.953s . I
Selected (Total Time): 0.708s

& Advixe-gui

@ @
& O /global/cscratchl/sd/tk

File View Help

}7M{ e000 (read-only) 3 |

NoMachine - NERSC

Cache-Aware Roofline

i@ | Elapsed time: 50.50s |¥ Not Vectorized
FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~

@ Summary % Survey & Roofline @ Refinement Reports

% Performance (GFLOPS) R]g‘ 5 | [Use Single-Threaded Roofs @ | [Show Hierarchical Data =
E 1 000 T B e e T e - —m o m - ———m——mm—————— - —— B - - - - - - -
ot . __...---BPVector FMA Peak:-843706 GFLOPS
GB’SeC- = S I e _—__—_-‘.-.—;.—.‘El-’—'-’—-_‘—ﬁ-_—--—--——-——j—_——d-.->»13*'—'5-—_;-: ———————— L gt - --
100 e 551601 2= .- PP Vectqr AR Ppakice39.38 GFLBRS?
T\ bt R U= R O O
pand Wt oL 2] GBISe:--0 =
A "];dw'\dth‘ 598
10_L2.E’¢a_ gt 0’2_16 CEB_’_, zimm
- aandwWidt 25T g e
L3 Bantt ‘ g .85 GBI : : :
Lt 4 jdth: 1 bench_stencil_ver4ompparallel_for@193 stencil_v2.c:201
1{pRAM BT o2 Performance: 23.08 GFLOPS
' L1 Arithmetic Intensity: 0.12 FLOP/Byte
0.01 0.1 Self Elapsed Time: 10.004 s
Self Elapsed Time: 10.004 s Total Time: 159.595 s Total Time:163:696
Source | Top Down | Code Analytics | Assembly | ¥ Recommendations | & Why No Vectorization?
Lin. Source Total Time | % Loop/Function Time | % Traits l
200 #pragma vector nontemporal
201 for(i=0; i<jStride; i++){ 3.636s 159.595s . I
Selected (Total Time): 3.636s

& Advixe-gui

[JON) NoMachine - NERSC

& O /global/cscratchl/sd/tk .
e view oy DRAM Roofline*

} WelcomeJ e000 \

@ | Elapsed time: 50.40s |3 | EeRYTaTeliP4=l1 Not Vectorized MKL orf ll : | @

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~

Summary % Survey & Roofline ™i Refinement Reports

2} Performance (GFLOPS) R ’8‘ 3 «
v
=) 1688.18- A CBIset Bz zszzz=D -crzzrro-d 5
= A BT cEmnt o R R T DP Vector Add Peale: 422.07-GF-60PS" ™"
- - o ~oi® i | Dnged e JFP VeCtor AQd Feald q.. U4 bLrEUPS
- B R e e it b i i B T
L L R sesssmie i e Sediar Aod Peaks L1 10|GHLORS
- - o 9 T 2 —‘
o CERSE Yo B} |"w = f_ ';;_‘___‘._E :ic-':_l. ‘_L'_ PR L s -7" p] e —
DRAM Bl e~ —=m=2 = - [
o & [loop in bench_stencil_ver0ompparallel_for@25 at stencil_v2.c:26] ‘
Total Performance: 5.45 GFLOPS o B
066 | Total L1 Arithmetic Intensity: 0.17 FLOP/Byte |
0.05 Self Elapsed Tir_ne: 0.000 s 5
@ Self Elapsed Time: 0.000 s Total Elapsed Tim sity (FLOP/Byte)

Code Analytics | Assembly | ¥ Recommendations | & Why No Vectorization?

Source | Top Down

‘ Lin. Source Total Time | % Loop/Function Time | % Traits
24 ™ while(ElapsedTime < TIME){ ' I
25 #pragma omp parallel for

159417.000ms s

26 for(k=1;k<dim+1; k++){
127 for(i=1; j<dim+1;i++){

Selected (Total Time): Oms

= Advixe-gui & emacs-gtk@cori .,».-.w.. onal.224 _A ».p,_ ‘

BERKELEY LAB

@ @
& O /global/cscratchl/sd/tk

File View Help

} WelcomeJ e000 x \

NoMachine - NERSC

DRAM Roofline*

O Vectorized

@ | Elapsed time: 50.40s

orr il

MKL

FILTER:| All Modules ~«

Loops And Functions ~

All Threads ~

Summary

Performance (GFLOPS)

w
c
-~
<
T
-

R QU «
1688.18 . epfseC o

= b~ ST =i S TR
C. O g RS TRE DP Vector Add Pealc; 422.07-GF-OPS™ ™
= _;): e e _‘:__‘:_‘_‘_‘_‘:.-‘-"-B"“‘“ ——————————————————————————————————————— - —_—‘_—__—_—_—_—_—_—.-—--"B“':—' i ittt 7)— ==
" o pommm===—-=77""5calar Add Peale: 115.16 GFLOPS®

62 #pragma omp parallel for
63 for(k=1;k<dim+1; k++){
64 for(i=1; j<dim+1;j++){

159453.000ms

Selected (Total Time):

oA
e N i = it ?‘—_ A-[:j; : £ . "
S| S8 [loop in bench_stencil_ver1ompparallel_for@62 at stencil_v2.c:63] |
Total Performance: 10.18 GFLOPS [
0.66 - | Total L1 Arithmetic Intensity: 0.17 FLOP/Byte |
0.05 Self Elapsed Time: 0.000 s 5
@ Self Elapsed Time: 0.000 s Total Elapsed Tim |kl AL C nsity (FLOP/Byte)
Source | Top Down | Code Analytics | Assembly | ¥+ Recommendations | @ Why No Vectorization?
‘ Lin. Source Total Time | % Loop/Function Time | % Traits |
61 * while(ElapsedTime < TIME){ ' l

E Advixe-qui

~

Frrerreer ﬂ

BERKELEY LAB

[JON) NoMachine - NERSC

& O /global/cscratchl/sd/tk D RAM ROOﬂ | n e*

File View Help
| Welcome | 2000 | .
@ | Elapsed time: 50.40s |¥ MKL off [l | @
FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~ R 2Ul
Summary % Survey & Roofline ™i Refinement Reports _ :
% Performance (GFLOPS) R [Q M « X [P ~ | [UseSingle-Threaded Roofs @ | ¥ Show Hierarchical Data —
= ? DP Vector FMA Peak: 1688.18 GFLOPS
E 168818“ Y ._--"T‘:_;fl[_ﬁ"’—'"”““__d)______._v——~+3 ““““““““ _ ‘_‘_‘_‘_‘__‘__:::‘—'—‘*E*""‘"“"““"‘:::::::"‘- ::: ;::::l“";;“.‘-_‘I;I““-‘: e - -,) A
) BandWIdIY oo amreee. e T e S B DP Vector Add Peak: 422.07-GFLOPS”
% AR e i e el R . e
S "~ Scalar Add Peale: 115.16 GFLOPS
__________ A e N R N e e e e e e e T o o o ot ot S o et e e e e St A e o e e i S S
- , - '? = o : —‘
o AM Ban iC "'t,"_'i _'_F_‘ ' 3 r:. 'f‘_ -:—E A :‘li S =) ‘{ o = r ‘‘‘‘ .|
s | [loop in bench_stencil ver2ompparallel_for@102 at stencil_v2.c:103]
Total Performance: 15.28 GFLOPS .
0.66 - | Total L1 Arithmetic Intensity: 0.28 FLOP/Byte
0.05 Self Elapsed Time: 0.008 s
@ Self Elapsed Time: 0.008 s Total Elapsed Time: 9.964 s kot italUCIS L yte)
Source | Top Down | Code Analytics | Assembly | ¥+ Recommendations | @ Why No Vectorization?
Lin. Source Total Time | % Loop/Function Time | % Traits |
101 ® while(ElapsedTime < TIME){
102 #pragma omp parallel for schedule(static,1) 16.002ms W I
103 for(tile=0;tile<jTiles*kTiles; tile++){ 159651.000ms s
(104 int kLo = 16*(tile/iTiles); Divisi...
Selected (Total Time): Oms

E Advixe-qui

-~

Frrerreer 'ﬁ

BERKELEY LAB

@ @® NoMachine - NERSC

& O /global/cscratchl/sd/tk .
e Vi oy DRAM Roofline*

} WelcomeJ e000 \
orr il

@ | Elapsed time: 50.40s |3 |EeRYTaTeliP4=l1 Not Vectorized MKL : | @

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~

Summary % Survey & Roofline ™i Refinement Reports

% Pperformance (GFLOPS) R [Q M « X [P ~ | [UseSingle-Threaded Roofs @ | ¥ Show Hierarchical Data -

;U - A .'"[,'{5;_“,’2\;‘“? S R I T R RO T — S [—— . —

B | 1688.18 —— e TR CRISEE et TR Eb Vector FMA Pealc 1688,18/GFLOPS -

- B e [i_"_ i e R e et ___._._.__._,_E},_—._—_‘_"_'_'_5_._-_-; ____________________________________ e - : __H_—_- _______ o
e S e PR A ertEry Add Peale 4272 07

[loop in bench_stencil_ver3ompparallel_for@146 at stencil_v2.c:146]
Total Performance: 15.67 GFLOPS
0.66 - Total L1 Arithmetic Intensity: 0.28 FLOP/Byte

Self Elapsed Time: 0.000 s

Total Elapsed Time: 9.926 s

0.05
Self Elapsed Time: 0.000 s Total Elapsed Time: 9.926 s
Code Analytics | Assembly | ¥ Recommendations | & Why No Vectorization?

Source | Top Down

Total Time | % Loop/Function Time | % Traits |

Lin. Source
144 StartTime = omp_get wtime();
145 while (ElapsedTime < TIME){
43.998 ms I 159807.000ms s I

146 #pragma omp parallel for schedule(static,1)
147 for(tile=0:tile<ijTiles*kTiles;tile++){

Selected (Total Time): 43.998ms

= Advixe-gui & emacs-gtk@cori .,».-.w.. onal.224 _A ».p,_ ‘

BERKELEY LAB

[JON) NoMachine - NERSC

& O /global/cscratchl/sd/tk .
e view oy DRAM Roofline*

} WelcomeJ e000 x \

@ | Elapsed time: 50.40s |3 |EeRYTaTe P4l Not Vectorized MKL orf ll : | @

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~

Summary % Survey & Roofline ™i Refinement Reports

% Performance (GFLOPS) R [Q M « X [P ~ | [UseSingle-Threaded Roofs @ | ¥ Show Hierarchical Data -
;U - A .'"[,'{5;_“,’2\;‘“? S R I R RO, TR — S [————— . —
| R i Lo Ye R ORI g R TP Vector FMA Peak: 168818 GFLOPS - --
- i_"_ i e R Rt e ___._._.__._,_E},_—._—_‘_"_'_'_s_ S S R - : __H_—_- _______

e S e PR A ertEry Add Peale 4272 07

Scalar Add Peal: 115.16 GFLOPS®

ARAM Ban _'_~ H l__ _11 \ p 'l-:: —— ‘:‘E =i 3) + > ‘r """" "l .
b = [loop in bench_stencil_ver4ompparallel_for@193 at stencil_v2.c:193]
Total Performance: 18.98 GFLOPS
0.66 - Total L1 Arithmetic Intensity: 0.41 FLOP/Byte

Self Elapsed Time: 0.000 s
Total Elapsed Time: 9.956 s

0.05
Self Elapsed Time: 0.000 s Total Elapsed Time: 9.956 s
Code Analytics | Assembly | ¥ Recommendations | & Why No Vectorization?

Source | Top Down
‘ Lin. Source Total Time | % Loop/Function Time | % Traits
(191 StartTime = omp_get wtime(); ' |
192 while (ElapsedTime < TIME){
‘193 #pragma omp parallel for schedule(static,1) 8.004ms 160161.000ms I
1194 for(tile=0:tile<iTiles*kTiles;tile++){
Selected (Total Time): 8.004ms

= Advixe-qui () emacs-gtk@cori .,».-.w.. onal.224 _A ».p,_ ‘

BERKELEY LAB

>
]

A .
«1 BERKELEY LAB Sy

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

EEEEEEEEEEEE

NERGY

Wrap up / Questions

Roofline/Advisor Tutorial at SC’17

= Sunday November 12t
= 8:30am-12pm (half-day tutorial)
= multi-’/manycore focus

57

Intel Advisor (Useful Links)

Background

= https://software.intel.com/en-us/intel-advisor-xe

= https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature

= https://www.youtube.com/watch?v=h2QEM1HpFqgg

Running Advisor on NERSC Systems

= http://www.nersc.qov/users/software/performance-and-
debugqging-tools/advisor/

< i @ g software.intel.com

Vectorization and Threading are Crucial to Performance

On modem processors, it is becoming crucial 1o both vectorize (use AVX” or SIMD" instructions)
and thread software to realize the full performance potential of the processor. In some cases, code
that is vectorized and threaded can be up to 187X faster than unthreaded/iunveclorized code—and
about 7X faster than code that is only threaded or vectorized. And that gap is growing with every
new processor generation

e

B
L
Binomial Options Per Sec. SP
(Migher is Better)

Site Map | My NERSC | < Share

Threaded plus vectorized can be much faster than either ane alone. The gap is grd
new hardware goneration. Detals

Job Logs & Statistios.
Training & Tutorisls
Software

User Environment

Using Shifter and Docker
Al Software List
Agpications

Complers

Programming Modsls
Version Control Tools

Intef® Advisor gives you data o forecast the performance gain before you invest sl
in implementation. Implement only the options that have a high retum on investme|

Data-Driven Vectorization Optimization and Threading Desig|

Programming Libraries

Perdormance and Debugaing

You need good data to make good design decisions. What loops should be thready Tools
vectorized first? Is the performance gain worth the effort? Will the threading pecfort oor

targer core counts? Does this loop have a dependency that prevents

trip counts and memory access pattems? Have | vectorized efficiently with the late 1

1 using older SIMD instructions? STAT and ATP

€C08 and ip>

Vectorization Optimization: Guidance to Speed up your Appli

Home « For Users = Software = Performance and Debugging Tools « Advisor

ADVISOR

Introduction
Intel Advisor peovides two workflows 10 help ensure that Fortran, C and Cee TABLE OF CONTENTS
applications can make the most of today's processors: 1. Introduction

2. Using lntel Advisor on Edison and
Cort

 Vectorization Advisor identifies loops that will benefit most from vectorization,
speciies what &5 biocking effective vectorzation, finds the benefit of alemative
o and increases the that s safe.

2. Some Important command Line
Options for Intel Advisor

4. Using the Advisor GUI

5. Roofline tool on Corf

« Threading Advisor is used for threading design and prototyping and 10 andyZe, g, Downdoads.
design, tune, and check threading design Options without disrupting normal
code development,

For more Intel Advisor visit vis

Back o Top
Using Intel Advisor on Edison and Cori

To launch Advisor, the Lustre Filo System should be used instead of GPFS. Either the command line tool, *advixe~ci® or the GUI
can be sed. We recommend you 1o use the command ine 100, “Inspxe-cl’, to collect data via batch jobs, and then Gispiay
resuits using the GUI, “nspxe-gui®, on a login node on Edison.

Compiling Codes to Run with Advisor

Additional Compiler
In order 1o compie the coce 10 work with Adviscr, some additional flags need 10 be used.

Cray Compiler Wrapper {ftn, cc, CC)

When using the Cray compller wrappers to compile codes 10 work with Advisor, the '-g’ and the -cynamic’ flags should be used.
1t is recommended that 8 minimum optimzation level of 2 shouk! be used for compiing codes that will be analyzed using intel
Advisor, To compile a C code for MP1 as well as OpenMP, use the following command:

Here, the -g option is needed 10 assist Advisor to associate sddresses 1o source lines, and the -dynamic option is needed o buikd
dynamically linked applications with the compler wrappers on Edison (the compler wrappers, fin, cc, and CC, link applcations
statically by defau).

Without the the folowing eror ted:

i % module load advisor]
I % cc -g -openmp -0 mycode.exe mycode.c :
D% srun -n 1 -c 8 advixe-cl --collect survey --project-dir ./myproj -- ./mycode.exe :
: advixe: Ercor: Binary file of the analysis target does not contain sysbols required for profilic

~
Frerrrr o

BERKELEY LAB

rjh‘ m B E R K E L EY LA B f*“e U.S. DEPARTMENT OF
r & A _:
| (9! ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Acknowledgements

= This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

= This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-ACO02-
05CH11231.

= This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

= Special Thanks to:
« Zakhar Matveev, Intel Corporation
« Roman Belenov, Intel Corporation

