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Scope of This Webinar

What we want to do:

e Explain what NERSC, ALCF, and OLCF are doing to
welcome and support Python users in HPC.

e Provide guidance and best practices to help users
improve Python performance at the Centers.

e Point out some great tools that now exist to support
developers of Python in HPC.

What we assume:

e You know and use Python and are familiar with the
Scientific Python Stack, or

e You know and use HPC and are curious about using
Python in your own HPC work.
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Agenda

e Motivation

How is Python relevant to HPC?
e Practical Matters

Using Python at NERSC, ALCF, and OLCF
e Single Node Performance

Threads e Cython, Extensions e Profiling
e Scaling Up Python

MPI(4py) e Caveats e Parallel /0
e Conclusion & More Resources

[We will pause for 1-2 questions at each breakpoint,
Matt will manage Q&A via Webex chat.]



Motivation
How is Python relevant to HPC?



Python is a Very Popular Language

Aug 2016 Aug 2015 Change Programming Language Ratings Change “What programming
L]
1 1 Java 19.010% -0.26% language should | learn?
2 2 C 11.303% -3.43%
3 3 C++ 5.800% -1.94%
4 4 C# 4.907% +0.07%
5 5 Python 4.404% +0.34% Pytho n
6 T s PHP 3.173% +0.44%
7 9 A JavaScript 2.705% +0.54% ' ‘
8 8 Visual Basic NET 2.518% -0.19% For anyone interested in research and big data analysis, Python
can be a powerful language to start with. Python has an
9 10 ~ Perl 2.511% +0.39% engaged community and is updated often, with a new version
released each year or so. According to Google Trends, learning
10 12 A Assembly language 2.364% +0.60%

Python is expected to become more and more popular.

www.tiobe.com/tiobe-index n

Most Popular Coding Languages of 2016

bestprogramminglanguagefor.me

“What programming
languages are good for
Data Science?”

“What programming
languages are widely used in
industry, science, or
ML/coding challenges?”

code¢ va\
codeval.com




Why is Python Popular?

interface Model

Makes a great first impression:
Clean, clear syntax.

class BasicModel ( Model ) :

def _ init ( self, gaussian_process, training_data, updsz

Multi-paradigm, interpreted. g el s
DUCk typlng’ garbage CO”eCt|0n training_size len( self.training_data )
“Instant productivity!” el Sl i
self._gram numpy.zeros{ ( training_size, t
self. log_gram_det None
self._inv_gram numpy.zeros_like{ self._gram )
- y self. _residuals numpy.zeros{ training_size )
Keeps up Wlth users needs: self._inv_gram_resp - numpy.zeros( training_size )
Flexible, full-featured data structures. R et
Extensive standard libraries. e
1f )
Reusable Open_source paCkageS M = i:ﬁﬁgg sE.':- ) ( numpy.dot( self._residuals, self._in
PaCkage management tOOIS self _ingEg_r_'am_det 1enj(- ;e}f training_data
. numpy . log{ 2.8 * numpy.p
Good unit testing frameworks. Soripnity
EXtenSible Wlth C/ C++/ Fortran for o Eﬁﬁ:parggizegzisiii:_;r;cess mean_function. hyperparz
OptImIZIng h|gh performance kel’ne|S deque a:tend{ self gaussian_process.covariance_funct
= . return deque
“Instant pI‘OdUCtiVity, @hyperparameters.setter
. 1f, 1 bl :
erformance when you need it” (? O e Gllsctineinant )
P y

self. gaussian_process mean_function. take_hyperparamet]


https://pypi.python.org/pypi

The Scientific Python Stack

I; ,t\\

matplotllb @ astropy

Y

Primary Uses:
e Script workflows for both data analysis and simulations
e Perform exploratory, interactive data analytics & viz



Python at the HPC Center

Observation: High productivity has driven
the growth of Python in the sciences.

...Not high performance (so much).

But supporting Python is no longer optional
at HPC centers like NERSC, ALCF, OLCF.

Maximizing Python performance on these
systems can be (0k, is) challenging:

e Interpreted, dynamic languages are
difficult to optimize.

e Python’s global interpreter lock (GIL)
has consequences for parallelism.

e Language design and implementation
choices made without considering
realities of HPC.




PyFR: Gordon Bell & SC16 Best Paper Finalist

Towards Green Aviation with Python at Petascale

Peter Vincent®, Freddie Witherden®, Brian Vermeire®, Jin Seok Park! and Arvind Iyer"
Department of Aeronautics, Imperial College London, London, United Kingdom

s Demonstrated use of Python in a high-end HPC
context for simulation of real-world flow problems
at up to 13.7 DP-PFLOP/s.

o Detailed how a single Python codebase can
target multiple platforms, including heterogeneous
systems, using an innovative runtime code-
generation paradigm.

s Achieved 58% computational efficiency for an un-
structured mesh fluid dynamics simulation.

e Performance portability enabled by Python:
CFD from a single code base supporting CPU and GPU
architectures, a few x1000 lines of code.

e There is a place for Python at the highest levels of
performance in supercomputing.

[http://sc16.supercomputing.org/201 6/08/23/finaIists—compete—prestiqious—aom—qordon—belI—prize—hiqh—performance—computinq/]] 0

[http://sc16.supercomputing.org/2016/09/21/sc16-announces-best-paper-nominees]
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Basic Guidelines for Python in HPC

o |dentify and exploit parallelism at the core,
node, and cluster levels.

e Understand and apply numpy array syntax
and its broadcasting rules (skipped here):

[https://docs.scipy.org/doc/numpy/reference/arrays.html]
[https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

e Measure your codes’ performance using
profiling tools.

e Ask for help.

11
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Practical Matters
Using Python at NERSC, ALCF, & OLCF



Python at NERSC, ALCF, & OLCF

e Environment Modules

[http://modules.sourceforge.net]
“The Environment Modules package provides for the dynamic modification

of a user's environment via modulefiles.”

module avail python

module load python

module swap python/2.7 python/3.5
module help..

e Or install your own Python (many options).

e System Python (e.g. /usr/bin/python),
use at your own risk.

13
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Python Builds and Distributions

Centers may build, install Python & packages from
... source,

... package managers like Spack®, € Spack
[https://spack.readthedocs.io/en/latest/]

... using distribution like Anaconda “and/or” Intel, O#ucees @

[https://docs.continuum.io/anaconda/]

[https://software.intel.com/en-us/distribution-for-python]

... or all of the above.

Centers also let users set up their own!
e Packages depending on MPI should always be built

against system vendor-provided libraries.

e Anaconda distribution comes with Intel MKL built-in.
Intel distribution heavily leverages Anaconda tools.

[* Spack: An upcoming IDEAS Webinar topic.]

14
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Customizing I: Virtualenv

User-controlled isolated python environments

e Site packages root under your control
e Activated venvs preclude other python interpreters
e Semi-conflicts with environment modules

o Setup environment modules prior to activation

$ virtualenv -p python2.7 /path/to/my env
$ . /path/to/my env/bin/activate
(my env)$ pip install --trusted-host \
pypi.python.org -U pip
(my env)$ CC=cc MPICC=cc pip install -v \
--no-binary :all: mpidpy
(my env)$ deactivate

15



Customizing I: Virtualenv (cont’d)

Your packages with an external interpreter

e Install your own packages in your venv
e Use them with external python within your python scripts
e Mix-and-match with center-provided packages

#!/usr/bin/env python2.7
activate this = '/path/to/env/bin/activate this.py'
execfile (activate_ this, dict(_file =activate_ this))

N.B.: Packages installed in the venv will supercede
versions installed at the site level.

16



Customizing ll: Conda environments

Anaconda provides the conda tool:
[https://conda.io/docs/index.html]

e C(Create, update, share “environments.”
e |ncompatible with virtualenv, replaces it.
e Many pre-built packages organized in custom “channels.”

e |everage your center’'s Anaconda install to create custom
environments with the conda tool.

Your own Anaconda/“Miniconda” installation:

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86 64.sh
/bin/bash Miniconda2-latest-Linux-x86 64.sh -b -p $PREFIX

source S$PREFIX/bin/activate

conda install basemap yt..

Your own Intel Python Installation:

conda create -c intel -n idp intelpython2 core python=2
source activate idp

17
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Python at NERSC

NERSC-built:

module load python[/2.7.9]
python base/2.7.9
numpy/1.9.2

scipy/0.15.1 [default]
matplotlib/1.4.3

ipython/3.1.0
Anaconda:

module load python/2.7-anaconda
module load python/3.5-anaconda

NERSC-built:
None
Anaconda:

module load [python/2.7-anaconda]
module load python/3.5-anaconda

[defauli]

Conda env via module (either system)
module load python/2.7-anaconda
conda create -n myenv numpy...
source activate myenv

[http://www.nersc.gov/users/data-analytics/data-analytics/python/] 18
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Python at ALCF

e Every system we run is a cross-compile environment except Cooley
e pip/distutils/setuptools/anaconda don’t play well with cross-compiling
e Blue Gene/Q Python is manually mantained
o Instructions on use are available in: /soft/cobalt/examples/python
o Modules built on request
e Theta offers Python either as:
o Intel Python - managed and used via Conda
m We prefer users to install their own environments
m Users will need to set up their environment to use the Cray MPICH
compatibility ABI and strictly build with the Intel MPI wrappers:
http://docs.cray.com/books/S-2544-704/S-2544-704.pdf
o ALCF Python managed via Spack and loadable via modules
module load alcfpython/2.7.13-20170513
m A module that loads modules for NumPy, SciPy, MKL, h5py, mpi4py...
m  We build and rebuild alcfpython via Spack to emphasize performance
and Cray compatibility
m Use of virtualenv is recommended - do not mix conda and virtualenv!!!

We'll build any package with a Spack spec on request h



Python at OLCF

Provided interpreters:
module load python[/2.7.9]
python/3.5.1

Major Provided Packages:

python numpy/1.9.2
python scipy/0.15.1
python matplotlib/1.2.1
python ipython/3.0.0
python mpidpy/1.3.1
python hb5py/2.6.0
python netcdf4/1.1.7

Anaconda:
e Prefer to build your own
e Generally interferes with Tcl Environment Modules

Custom package install paths:
e Prefer NFS project space /cecs/proj/${PROJECTID}
e Take care with user site-packages, $ { HOME }
e Avoid /lustre/atlas

Further site-specific information on the OLCF Website

[https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olc

f-python-best-practices]

20
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Single Node Performance
Threads e Cython, Extensions e
Profiling



Structuring a HPC Python code




Parallelism & Python: A Word on the GIL

To keep memory coherent, Python only allows a single thread to run in the
interpreter's memory space at once. This is enforced by the Global Interpreter
Lock, or GIL.

The GIL isn’t all bad. It:
|s mostly sidestepped for I/O (files and sockets)
Makes writing modules in C much easier
Makes maintaining the interpreter much easier
Encourages the development of other paradigms for parallelism
Is almost entirely irrelevant in the HPC space as it neither impacts MPI or
threads embedded in compiled modules

For the gory details, see David Beazley's talk on the GIL:
https://www.youtube.com/watch?v=fwzPF2Jl_.oeU

23
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Use Threaded Libraries

e Building blocks like NumPy and SciPy are already built
with MPI and thread support via BLAS/LAPACK, MKL
e Don’t reimplement solvers in pure Python
e Many of your favorite threaded libraries and packages
already have bindings:
o PyTrilinos
o petscdpy
o Elemental
o SLEPc

24



Using Compiled Modules

Methods of using pre-compiled, threaded, GlL-free code for
speed include:

Cython

f2py

PyBind11

swig

Boost

Ctypes

Writing bindings in C/C++
http://dan.iel.fm/posts/python-c-extensions/

25
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More control: Cython

Cython is a meant to make writing C extensions easy

Naive usage can offer x12 speedups

Builds on Python syntax

Translates .pyx files to C which compiles

Provides interfaces for using functionality from OpenMP,
CPython, libc, libc++, NumPy, and more

Works best when you can statically type variables

e Lets you turn off the GIL

26



More control: Cython

Generated by Cython 0.25.2

Yellow lines hint at Python interaction.

n,om

Click on a line that starts with a "+" to see the C code
that Cython generated for it.

Raw output: calcpipy.c

+01: import random

02:
+03: def calcpi py(samples):
04: """serially calculate Pi using only standard library functions"""
+05: inside = 0
+06: random.seed(0)
+07: for i in range(int(samples)):
+08: x = random.random()
+09: y = random.random( )
+10: if (x*x)+(y*y) < 1l:
+11: inside += 1
+12: return (4.0 * inside)/samples

Generated by Cython 0.25.2

Yellow lines hint at Python interaction.

n,n

Click on a line that starts with a "+" to see the C code

that Cython generated for it.

Raw output: calcpi.c

+01: cdef extern from "stdlib.h":

02: cpdef long random() nogil
03: cpdef void srandom(unsigned int) nogil
04: cpdef const long RAND_ MAX
05:
+06: cdef double randdbl() nogil:
07: cdef double r
+08: r = random()
+09: r = r/RAND_ MAX
+10: return r
11:
+12: cpdef double calcpi(const int samples):
13: """serially calculate Pi using Cython library functions
14: cdef int inside, i
153 cdef double x, y
16:
+17: inside = 0
18:
+19: srandom(0)
+20: for i in range(samples):
+21: x = randdbl()
+22: y = randdbl()
+23: if (x*x)+(y*y) < 1:
+24: inside += 1
#25: return (4.0 * inside)/samples
26

nmn
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More control: f2py

$cat calcpi.f90

subroutine calcpi(samples, pi)
REAL, INTENT(OUT) :: pi
INTEGER, INTENT(IN) :: samples
REAL :: x, y
INTEGER :: i, inside

inside = 0
do i =1, samples

call random_number(x)
call random_number(y)

if ( xx%x2 + yxkx2 <= 1.0D+00 ) then
inside = inside + 1
end if

end do
pi = 4.0 *x REAL(inside) / REAL(samples)
end subroutine

$f2py ——fcompiler=gfortran -m calcpi_fortran -c calcpi.f90
$python -c "import calcpi_fortran; print calcpi_fortran.calcpi(1000000)"
3.14163589478



Basic Profiling: cProfile & SnakeViz

cProfile
Low-overhead profiler, from standard library.
Outputs statistics on what your code is doing:
Number of function calls,
Total time spend in functions,

Time per function call, etc.

[https://docs.python.org/2/library/debug.html]
[https://docs.python.org/2/library/profile.html#module-cProfile]
[https://docs.python.org/2/library/profile.html#the-stats-class]

SnakeViz

Lets you visualize cProfile output in a browser:
Statistics mentioned above.
Visualize call stack & drill-down.

4. decomp_cholesky.py:136(cho_seolve)

3. decomp_cholesky.py:136(cho_solve)

2. gpr.py:7B({objective)

1. gpr.py:3(<module>)

0. ~:0({<built-in method builtins.exec>)

> python -m cProfile -o out.prof my-program.py

> snakeviz out.prof
snakeviz web server started on 127.0.0.1:8080..
[https://jiffyclub.github.io/snakeviz/] _ -
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Intel VTune Works with Python Code

NoMachine - NX5Configure-2

VTune Amplifier

W O <no curren t project> - Intel VTune Amplifier <@cori03>

h| & el b B & @ Welome

hswn64 X

@ Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

B Collection Log

@ Analysis Target

Analysis Type

CRSTINTNETRYN & Bottom-up

« Caller/Callee

INTEL VTUNE AMPLIFIER XE 2017

% Top-down Tree |B Platform

Performance anal SiS rofi |er Grouping: Function / Call Stack v|[x][a][% |} cpuTime =
y p L] CPU A viewin g 4 1of15 p selected stac,
Function / Call Stack Effectiv Tme by Utilizatior & Spin Time “ 5519 (43,4975 of 78,9945)
I |' . Side @Poor 10Ok @ Ideal IO | imbalance or serial Spinning (0penMP) | Lock Contention (OpenMP) | other b il ‘pm e P
and command-line interface. s A = > g [
» fftw_cpyad 47,3625 @ - 0s 0s 0¢ n-35m-x86_ 64-l
» fitwf_cpy2d 28.498s L ] 03 0s 0c on-35m-x86_64-i...
p CDOUBLE_multiply 21531s @ '] 0s 0s 0s
P gridrec 19,7485 @ 0s 0s 0
» float_downcoef_axis 18.983s | 0s 0s 0
] ] » nibv 32 | 147225 pEmR 0s 0s 0¢
Thread timelines g w650, et o -
- » float_downsampling_convolution 13.743s | 0s 0s 0¢
. » DOUBLE_divide | 129225 [ D] 0s 0s 0
» float_idwt_axis 12.323s @ 0s 0s 0
Hotspot analysis. ; —
» _int_free 10.1865 B0 0s 0s 0
L i ~ s = " L L
M en IOry prOfI li ng . £ 14 31 B Thiead |~
python (... _ EEEEEESMMMARMEEE | B Running
- 5 python " DaacPuT.
Locks & waits. £ python . 9 i Spin .
" python (. T DU Sa.
1 1 1 1 python (... [T EICPU Usage
lter/zoom In timeiline. ZauCPUT..
CPU Usa... J ‘ l. . Fliu Spin a...

»
LN 7y Process  IREEREN /ny Thread ~ BN -y Module ~ [l Any Utilizatic - Il User functions + 1~ Jll Show inline funct Jll Functions only

rrent project> - Intel VIune Amp ]';(Triél® Software Improvement Program. [iElcori:

- ] |
Run GUI (amplxe g'IJl) over NX [https://software.intel.com/en-us/node/628111]

[https://software.intel.com/en-us/videos/performance-analysis-of-python-applications-with-intel-vtune-amplifier]

Part of Intel Parallel Studio, may be available as a module, e.g. at NERSC:
> module load vtune
> salloc --perf=vtune

> srun amplxe-cl -collect hotspots python my-app.py
Best practice on KNL:

-no-auto-finalize, archive and -finalize on e.g. Haswell node

[e.q. http://www.nersc.gov/assets/Uploads/04-vtune.pdf]

Intel Tools Screenshots of TomoPy analysis 30
courtesy Zahra Ronaghi, NERSC
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Intel Advisor Works with Python Code

eoe NoMachine - NX5Configure-2

ao i - Intel Advisor <@cori03>
File View Help
b bmEge Ve XTR AN SO

F<60% |
| Welcome 0003

@ Summary % Survey & Roofline & Refinement Reports:
4 Some target modules do not contain debug information
Suggestion: enable debug information for relevant modules.

[@ | Elapsed time: 65.545 [ERTO T e |« | FITER: | All Modules ~|[ All Sources |[ Loops ~|[ All Threads ~

What should | do next? When do | stop?
Suggests optimizations for your C extensions.

P = Function Call Sites and Loops 8 @ Vector Issues Self Timev Total Time Type ;LFOL;S A l . . . -
=]
(S e o e wicm 05 POINE OUt vectorization opportunities.
B4 =0 [loop in gridrec at gridrec.c:238] I 92 Data type conversi... 14.620sHl  14.620s| Peeled/Remainder 121.2008 0.1
0 [loop in gridrec at gridrec.c:242] 1 92 Data type conversi... 10.577sH0 10.577sl Peeled/Remainder 153.3238@ 0.1 H H
ehooph it i AR T see o Optimize use of threads.
% [loop in gridrec at gridrec.c:324] 1 @2 Possible inefficient 6.287sH 6.287sl Vectorized (Body; Peel... 19.2021 0.1
[loop in gridrec at gridrec.c:246] 91 Possible inefficient... 2.715sl 32.946s1 Vectorized (Body; Re... H
e e Tl Gt e o WWOrks with Python and C/C++/Fortran code.
[loop in _aligned_strided_to_contig_size4_srcstride0] 1.886s1 1.886s! Vectorized (Body)
[loop in [MKL FFT] @1 Vector register spill.. 1.086sl 1.086s! Vectorized (Body) 591.506mmmm 0.4
[loop in [MKL FFT] 91 Vector register spill..  1.013sl 1.013s( Vectorized (Body) 910.614 0.5
[loop in gridrec at gridrec.c:192] o 0.892s! 0.892sl Vectorized (Body; Re...
[loop in [MKL FFT] 1 91 Vector register spill.. 0.810s! 0.810s( Vectorized (Body) 651.095mmm 0.4
=0 [loop in gridrec at gridrec.c:321] s} 0.142sl 6.429s( Scalar
=0 [loop in strlen] 0.090s! 0.090s( Scalar
=0 [loop in mememp] o 0.076sl 0.076sl Scalar
=0 [loop in gridrec at gridrec.c:186] [s] 0.068s! 70.082s8 Scalar
Source | Top Down | Code Analytics | Assembly |w ions | & Why No
) NoMachine - NX5Configure-2
ol hsw - Intel Advisor =— =

Source
work[k] = wtbl[(int) roundf(fabsf(V-iv)*tblspcg)];

#pragna sind assert, vecremainder, vectorlength(s)
for(iusiul, k=0; iu<=iuh; iwH, k++) {
work2[k] = wtbl[(int) roundf (fabsf(U-iu)*tblspcg)];

+
#pragna omp sind collapse(2) private(rtmp)
for (iusiul, k2=0; iu <= iuh; iutk, k2+) {
rtap = work2[k2];
for(iv=ivl, k=0; ive=ivh; ivi+, ki) {
const float convolv = rtmp*work[k];

s M @/alobal/

Roofline analysis*:
Performance of code in relation to
hardware limits.

Memory bandwidth or compute bound?
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work[k] = wtbl[(int) roundf(fabsf(V-iv)*tblspcg)];

#pragma sind assert, vecremainder, vectorlength(8)
for(iusiul, k=0; ius=iuh; iutt, k) {
work2[k] = wtbl[(int) roundf (fabsf(U-iu)*+tblspcg)1;
+
#pragna onp sind collapse(2) private (rtmp)
for (iusiul, k2=0; iu <= iuh; dwk, k2++) {
rtmp = work2[k2];
for(iv=ivl, k=0; ivesivh; iv++, ki) {
const float convolv = rtmp*work [k];
Selected (Total Time):
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Scaling Up Python
MPI(4py) e Caveats e Parallel I/0O



mpidpy: why MPI?

e It is (still) the HPC paradigm for inter-process
communications

e MPI makes full use of HPC environments

e Well-supported tools exist for parallel development with
MPI — even when using Python

e Python-MPI bindings have been developed since 1996
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mpidpy: why mpidpy?

Pythonic wrapping of the system’s native MPI
provides almost all MPI-1,2 and common MPI-3 features

very well maintained

distributed with major Python distributions

portable and scalable

o requires only: NumPy, Cython (build only), and an MPI

o used to run a Python application on 786,432 cores
o capabilities only limited by the system MPI
http://mpidpy.readthedocs.io/en/stable/
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http://mpi4py.scipy.org/
http://mpi4py.scipy.org/

mpi4py: running

e mpidpy jobs are launched like other MPI binaries:
o mpiexec -np ${RANKS} python ${PATH TO SCRIPT}

o Justrunning python ${PATH TO SCRIPT} should always work for a
single-rank case

e an independent Python interpreter launches per rank
o no automatic shared memory, files, or state

o crashing an interpreter does crash the MPI program
o it is possible to embed an interpreter in a C/C++ program and launch an
interpreter that way
e if you crash or have trouble with simple codes, remember:
CPython is a C binary and mpi4py is a binding
you will likely get core files and mangled stack traces
use Id or otool to check which MPI mpi4py is linked against
ensure Python, mpi4py, and your code are available on all nodes and
libraries and paths are correct
try running with a single rank
o rebuild with debugging symbols

O O O O

©)
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mpi4py: startup

Importing and MPI initialization:

importing mpi4py allows you to set runtime configuration

options (e.g. automatic initialization, thread_level) via

mpi14d4py.rc ()

importing the MPI submodule calls MPL_Init() by default

o calling Init () or Init thread () more than once
violates the MPI standard

o This will lead to a Python exception or an abort in

C/C++
o use Is initialized() to test for initialization
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mpi4py: shutdown

MPI Finalize () will automatically run at interpreter exit

use Is finalized () to test for finalization when uncertain

If a module called MPT Finalize ()
calling Finalize () more than once exits the interpreter

with an error and may crash C/C++/Fortran modules
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mpi4py and program structure

Any code, even if after MPT Init (), unless reserved to a
given rank will run on all ranks:

from mpidpy import MPI

comm = MPI.COMM WORLD
rank = comm.Get rank()
mplsize = comm.Get size ()

1f rank%2 ==
print ("Hello from an even rank: $d” % (rank))

comm.Barrier ()
print (“"Goodbye from rank %d” % (rank))
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mpi4py: datatypes

e Buffers, MPI datatypes, and NumPy objects aren’t pickled
o Transmitted near the speed of C/C++
o NumPy datatypes are autoconverted to MPI datatypes
o buffers may need to be described as a 2/3-list/tuple
m [data, MPI.DOUBLE] for a single double
m [data,count,MPI.INT] for an array of integers
o Custom MPI datatypes are supported
o Use the capitalized methods, eg: Recv (), Send ()
e All other objects require pickleing
o pickling and unpickling have significant overheads
o Use the lowercase methods, eg: recv (),send ()
e When in doubt, ask if what is being processed can be
represented as memory buffer or only as PyObiject
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mpi4py: communicators

e The two default communicators exist at startup:
o COMM WORLD

0 COMM SELF
e For safety, duplicate communicators before use in or with
libraries and modules you didn’t write
e Only break from the standard are methods:
Is inter () and Is intra ()

40



mpi4py: collectives and operations

e Collectives operating on Python objects are naive for example:

mpirun -n 8 $(which python) ./basic_features.py
B g g g g o o
Rank @ sees local_dict as {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'g': 'gee whiz', 'f': 6, 'h': ('hi', 'there')}

Rank @ sees local_list_max as [0, 1, 2, 3]

Rank @ sees local_list_sum as [0, 1, 2, 3]

Rank @ sees local_string as This is a string.

Rank @ sees local_tuple as (0, @, @, 0, 0, 0, @, 0)

Rank @ sees local_np_array as [0 123 456 7 8 9]
B s
Rank 6 sees local_dict as None

Rank 6 sees local_list_max as [0, 6, 12, 18]

Rank 6 sees local_list_sum as [0, 6, 12, 18]

Rank 6 sees local_string as This should be fun!

Rank 6 sees local_tuple as (6, 6, 6, 6, 6, 6, 6, 6)

Rank 6 sees local_np_array as [0 12 3 456 7 8 9]

Running collective operations

Rank @ sees local_dict as a after scatter using None

Rank @ sees local_list_max as [0, 7, 14, 21] after allreduce using max

Rank @ sees local_list_sum as [0, 1, 2, 3, 0, 1, 2, 3, @0, 2, 4, 6, @, 3, 6, 9, 0, 4, 8, 12, @, 5, 10, 15, @0, 6, 12, 18, @, 7, 14, 21] after reduce using sum
Rank @ sees local_string as This is a string. after bcast using defaults

Rank @ sees local_tuple as [0, 1, 2, 3, 4, 5, 6, 7] after alltoall using defaults

Rank @ sees local_np_array as [ @ 8 16 24 32 40 48 56 64 72] after allreduce using sum
B s s

Rank 6 sees local_dict as f after scatter using None

Rank 6 sees local_list_max as [0, 7, 14, 21] after allreduce using max

Rank 6 sees local_list_sum as None after reduce using sum

Rank 6 sees local_string as This is a string. after bcast using defaults

Rank 6 sees local_tuple as [0, 1, 2, 3, 4, 5, 6, 7] after alltoall using defaults

Rank 6 sees local_np_array as [ @ 8 16 24 32 40 48 56 64 72] after allreduce using sum

e Collective reduction operations on Python objects are mostly serial
e (Casing convention applies to methods:
o lowercased methods will work for general Python objects (albeit slowly)

o uppercase methods will work for NumPy/MPI data types at near C speed
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Parallel I/0 and h5py

e General Python I/O isn’t MPI-safe

e Beware pre-packaged hdpy

o (>>> import h5py re using:
>>> h5py.get_config().mpi

True

e Requires mpi4py and the mpicc used to compile hdf5,
mpi4py, and hSpy must match
e As easy to use as:
f = hbpy.File('myfile.hdf5', 'w',
driver='mpio', comm=MPI.COMM WORLD)
e All changes to file structure or metadata of a file must be
performed on all ranks with an open file
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Issues Affecting Python at Scale

Import Time (s)

Benchmark: mpidpy-import » 4800 MPI Tasks « 60 Days Ending 2016-06-16 Benchmark: Pynamic v1.3 « 4800 MPI Tasks « 60 Days Ending 2016-06-16
300 Corll Data Partition « Cray X§40 800 ICorl Data !I”art!tlon . ICray XC4O.
worse
700
250 + A i
2 600
£
200 + E
= 500
]
>
+
150 + 400
o
o
E
+ 300
100 |+ o
=
v Fu 200
better 2
50 +
100
Buffer Lustre
0 0

Ommoy,  Blawg,,  Project SCratep, tmprs ©mmey, dataw% Projecy  SCratey,  Shifte,  Uprs

Import astropy from virtualenv. Median benchmark time. Pynamic v1.3 start-up + import + visit only {no compute). Median benchmark time

Python’s “import” statement is file metadata intensive (.py, .pyc, .so open/stat calls).
Becomes more severe as the number of Python processes trying to access files increases.
Result: Very slow times to just start Python applications at larger concurrency (MPI).
Storage local to compute nodes, use of containers (Shifter) helps fix:

o Eliminates metadata calls off the compute nodes. .

o In containers, paths to .so libraries can be cached via I[dconfig. '
Other approaches:

o  Ship software stack to compute nodes (e.g., python-mpi-bcast).

o Install software to read-only/cache-enabled file systems. SHIFTER

o See also Spindle (Scalable Shared Library Loading).
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https://github.com/rainwoodman/python-mpi-bcast/wiki/NERSC
https://computation.llnl.gov/projects/spindle

Conclusion Next (Questions?)



Conclusion

NERSC, ALCF, and OLCF recognize, welcome, and want
to support new and experienced Python users in HPC.

Using Python on our systems can be as easy as a
module load, but can be customized by users.

We have provided some guidance and best practices to
help users improve Python performance in HPC context.

Try out some of the profiling and performance analysis
tools described here, and ask for help if you get stuck.

While there are many challenges for Python in HPC, if
users, staff, & vendors work together, there are many
rewards.
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More Resources

Your NERSC and LCF Python contacts:
NERSC: Rollin Thomas rcthomas@lbl.gov

ALCF: William Scullin  wscullin@alcf.anl.gov
OLCF: Matt Belhorn belhornmp@ornl.gov

Documentation:
NERSC: http://www.nersc.gov/users/data-analytics/data-analytics/python/
OLCF: https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olcf-python-best-practices/

Other presentations:

ALCF Performance Workshop (May 2017):
Python on HPC Best Practices http://www.alcf.anl.gov/files/scullin-python.pdf

NERSC Intel Python Training Event (March 2017):
Optimization Example http://www.nersc.gov/assets/Uploads/Intel-tomopy-Mar2017.pdf
by Oleksandr Pavlyk (Intel)
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http://www.nersc.gov/users/data-analytics/data-analytics/python/
https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olcf-python-best-practices/
http://www.alcf.anl.gov/files/scullin-python.pdf
http://www.nersc.gov/assets/Uploads/Intel-tomopy-Mar2017.pdf

Backup Material



Cross-Compiling on Crays with Pip

# Instruct Cray compiler wrappers to target the login node architecture so code will run
everywhere

module unload craype-interlagos

module load craype-istanbul

virualenv --python=python2.7 "${VENV NAME}"
source "S{VENV NAME}/bin/activate"

# If pip is badly out of date, the TLS certificates may not be trusted.
pip install --trusted-host pypi.python.org --upgrade pip

# Set envvars needed to guide pip for cross-compiling and instruct it to build from source

CC=cc MPICC=cc pip install -v --no-binary :all: mpidpy

# Set envvars needed for pip to use external dependencies. See package documentation.
HDF5 DIR="${CRAY HDF5 DIR}/${PE ENV}/${GNU VERSION%.*}"

CC=cc HDF5 MPI="ON" HDEF5 DIR="S{HDF5 DIR}" pip install -v --no-binary :all: hbpy
deactivate "S${VENV NAME}"

module unload craype-istanbul

module load craype-interlagos
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