
Best Practices for HPC Software

Developers Webinar Series

Session 4: Testing and Documenting Your Code
We will also give a half day tutorial on testing at SC16:

“Testing of HPC Scientific Software”

 Welcome! We will begin soon

• Make sure you get counted. Please visit http://bit.ly/hpcbp-s04

• We want this webinar to be interactive, and we encourage questions

• But we need to keep everyone’s mic muted (too many participants)

• Please use the Zoom Q&A tool to submit questions

• Or use type them into this Google Doc: http://bit.ly/hpcbp-qa

• Use the Zoom Chat tool for other issues

• Slides and a recording will be available from the OLCF training web site:
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

• We want to improve this series. Please send feedback to

HPCBestPractices+session04@gmail.com

2016-06-16

http://bit.ly/hpcbp-qa
http://bit.ly/hpcbp-qa
http://bit.ly/hpcbp-qa
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-5690 TR

Testing and Documenting your Code
Alicia Klinvex

Sandia National Labs

June 15, 2016

Outline

 Testing
 Why testing is important

 Types of tests

 Testing tips

 How Trilinos is tested

 Code coverage

 Documentation
 Why documentation is important

 Types of documentation

 How Trilinos is documented

 Documentation generators

TESTING

4

Why testing is important:
the protein structures of Geoffrey Chang

 Some inherited code flipped two columns of data, inverting
an electron-density map

 Resulted in an incorrect protein structure

 Resulted in 5 retracted publications
 One was cited 364 times

 Many papers and grant applications conflicting with his
results were rejected

5

A scientist's nightmare: Software problems lead to five retractions (Miller)

Why testing is important:
the 40 second flight of the Ariane 5

 Ariane 5: a European orbital launch vehicle meant to lift 20
tons into low Earth orbit

 Initial rocket went off course, started to disintegrate, then
self-destructed less than a minute after launch

 Seven variables were at risk of leading to an Operand Error
(due to conversion of floating point to integer)
 Four were protected

 Investigation concluded insufficient test coverage as one of
the causes for this accident

 Resulted in a loss of $370,000,000.

6

ARIANE 5 Flight 501 Failure (report by the Inquiry Board)

Why testing is important:
the Therac-25 accidents

 Therac-25: a computer-controlled radiation therapy machine

 Minimal software testing

 Race condition in the code went undetected

 Unlucky patients were struck with approximately 100 times
the intended dose of radiation, ~ 15,000 rads

 Error code indicated that no dose of radiation was given, so
operator instructed machine to proceed
 Documentation gave no indication that the frequent malfunctions of

the machine could place a patient at risk

 See also: why documentation is important

 Recalled after six accidents resulting in death and serious
injuries

7

An Investigation of the Therac-25 Accidents (Leveson & Turner)

Granularity of tests

 Unit tests
 Test individual functions or classes

 Build and run fast

 Localize errors

 Integration tests
 Test interaction of larger pieces of software

 System-level tests
 Test the full software system at the user interaction level

8

Types of tests

 Verification tests
 Does the code implement the intended algorithm correctly?

 Check for specific mathematical properties

 Acceptance tests
 Assert acceptable functioning for a specific customer

 Generally at the system-level

 Regression (no-change) tests
 Compare current observable output to a gold standard

 Must independently verify that the gold standard is correct

 Performance tests
 Focus on the runtime and resource utilization

 Nothing to do with correctness

 Installation tests
 Verify that the configure-make-install is working as expected

9

CSE testing challenges

 Floating point issues
 Different results

 On different platforms

 On different runs (due to multi-processor computation)

 Ill-conditioning can magnify these small differences

 Final solution may be different

 Number of iterations may be different

 Performing a diff is bad

 Non-unique solutions

10

CSE testing challenges

 Scalability testing
 Difficult to get accurate data on a shared machine

 Getting access to many processors on a parallel machine is expensive

 Many supercomputing facilities discourage routine scalability testing

 Large jobs may sit in the queue for quite some time

 How do you scale a problem for weak scaling studies?

 A more refined problem may not have the same condition number

11

Testing tips

 Ideal time to build a test suite is during development
 Ensures that new code does not break existing functionality

 Failing tests should help you identify what part of the code
needs to be fixed

 Software should be tested regularly

 Develop a consistent policy on dealing with failed tests
 Use an issue tracking system

 Add a regression test after the issue is fixed

 Run a regression test suite when checking in new code

 Avoid zero-diffing tests against gold standard output
 spiff (https://github.com/dontcallmedom/spiff)

12

https://github.com/dontcallmedom/spiff

What is Trilinos?

 A collection of libraries intended to be used as building blocks
for the development of scientific applications

 Organized into 66 packages
 Linear solvers

 Nonlinear solvers

 Eigensolvers

 And more!

 10,000+ commits

 135 contributors (according to github)

 Millions of lines of code

13

How is Trilinos tested?

 Trilinos has 1500 tests between its 66 packages

 Developers are strongly advised to run a checkin test script
when committing
 Detects which packages were modified by your commits

 Determines which packages you potentially broke

 Configures, builds, and tests those packages

 On success, pushes to repo

 On failure, reports why it failed

 Useful for ensuring your changes don’t break another package

 May take a while, but many people run it overnight

 Automated testing on a variety of different platforms

14

Why do we do automated testing if
everyone uses the checkin script?

 May test a different set of packages

 May test different environments
 Do your changes work with Intel compilers as well as GNU?

 Do your changes work on a mac?

 Do your changes work with CUDA?

 Identifies a small set of commits that could have broken a
build or test
 Average 12 commits per day

 Identifies the person who knows how to un-break it

 Bugs are easier to fix if caught early

15

Checkin test script examples

 Example 1: a harmless change to a comment

 Example 2: breaking the build

 Example 3: breaking some tests

16

Example 1: a harmless change

17

Example 1: a harmless change

18

Example 1: a harmless change

19

Note that the checkin script

correctly identified what

was modified.

Example 1: a harmless change

20

Configure, build, and test

passed for MPI_DEBUG

Example 1: a harmless change

21

We are ready to push

because all tests passed

Example 2: broken build

22

Missing semicolon at the

end of the class. This will

break the build

Example 2: broken build

23

The checkin script detected

that I broke the build

Example 2: broken build

24

Checkin script also creates

a log file with the error

Example 3: broken tests

25

Added a logic error to the

code.

Example 3: broken tests

26

The checkin script detected

that I broke several tests

Example 3: broken tests

27

The log file tells us which

tests were broken

Trilinos automated testing

28

testing.sandia.gov/cdash/viewSubProjects.php?project=Trilinos

Trilinos automated testing

29

Trilinos automated testing

30

 Several Amesos2 (direct solver) tests are broken.

 Are any of its dependencies broken?
 Yes, there is a broken Epetra (basic linear algebra) test

 Maybe this broke Amesos2

Trilinos automated testing

31

 Which tests were broken in Amesos2?

Trilinos automated testing

 If you may have broken something, you will get an email
about it

32

How do you motivate somebody to write all
those tests?

 Tests protect YOU from other people from breaking your
work
 If someone else’s changes break your code, they are responsible for

fixing it

 You may already have some
 Drivers for generating conference or paper results

 Just reduce the problem size

 User submitted bugs

 Ask for a file that reproduces the issue

 These make great regression tests

 Examples

 Add a pass/fail condition and you have a test

33

How do I determine what other tests I need?

 Code coverage tools
 Expose parts of the code that aren’t being tested

 gcov

 standard utility with the GNU compiler collection suite

 counts the number of times each statement is executed

 lcov

 a graphical front-end for gcov

 available at http://ltp.sourceforge.net/coverage/lcov.php

34

Similar tools exist for mac and windows

http://ltp.sourceforge.net/coverage/lcov.php

How to use lcov

 Compile and link your code with --coverage flag
 It’s a good idea to disable optimization

 Run your test suite

 Collect coverage data using lcov

 Generate html output using genhtml

35

A simple example

bool isEven(int x)

{

 if(x%2 == 0)

 return true;

 return false;

}

#include<iostream>

#include “isEven.hpp”

int main()

{

 int num = 8;

 if(isEven(num))

 std::cout << num << “ is an even number.\nTEST PASSED”;

 else

 std::cout << num << “ is an odd number.\nTEST FAILED”;

 return 0;

}

36

A simple example

 Compile and link with --coverage flag

 g++ --coverage evenExample.cpp -o
evenExample

 This creates a file called evenExample.gcno

 Run the test

 ./evenExample
 This creates a file called evenExample.gcda

 Collect coverage data using lcov

 lcov --capture --directory . --output-file
evenExample.info

 This creates evenExample.info

 Generate html output using genhtml

 genhtml evenExample.info --output-directory
evenHTML

 This generates html files in the directory evenHTML

37

A simple example

This is the file we’re testing

38

A simple example

We never tested this line of code

(which activates when x is odd)

39

Let’s add another test

bool isEven(int x)

{

 if(x%2 == 0)

 return true;

 return false;

}

#include<iostream>

#include “isEven.hpp”

int main()

{

 int num = 7;

 if(isEven(num))

 std::cout << num << “ is an even number.\nTEST FAILED”;

 else

 std::cout << num << “ is an odd number.\nTEST PASSED”;

 return 0;

}

40

A simple example

 Compile and link with --coverage flag

 g++ --coverage oddExample.cpp -o oddExample

 This creates a file called oddExample.gcno

 Run the test

 ./oddExample

 This creates a file called oddExample.gcda

 Collect coverage data for BOTH TESTS using lcov

 lcov --capture --directory . --output-file

twoExamples.info

 This creates twoExamples.info

 Generate html output using genhtml

 genhtml twoExamples.info --output-directory

totalHTML

 This generates html files in the directory totalHTML

41

A simple example

This is the file we’re testing

42

A simple example

We tested every line of this function

43

A real example - xSDKTrilinos

 Part of the Trilinos library, developed at SNL as part of the
IDEAS project

 Contains the interfaces between Trilinos, PETSc, and hypre

 Available at https://github.com/trilinos/xSDKTrilinos

 Ten automated tests are run nightly
 Six are actually examples that were converted into tests

 Did we leave anything out?

44

https://github.com/trilinos/xSDKTrilinos

A real example - xSDKTrilinos

 Step 1: Modify our CMake configuration file to use the
--coverage flag to compile and link
 -D CMAKE_CXX_FLAGS:STRING=“--coverage”

 -D CMAKE_C_FLAGS:STRING=“--coverage”

 -D CMAKE_EXE_LINKER_FLAGS:STRING=“--coverage”

45

A real example - xSDKTrilinos

 Build Trilinos (including xSDKTrilinos)

 ./do-configure

 make -j

 This will create a whole bunch of .gcno files

 This will also build the xSDKTrilinos tests because the
configure file included

 -D Trilinos_ENABLE_TESTS:BOOL=ON

 -D Trilinos_ENABLE_EXAMPLES:BOOL=ON

 -D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES=ON

46

A real example - xSDKTrilinos

 Run the tests using ctest
 Note that this is not prohibitively slow

47

A real example - xSDKTrilinos

 All tests passed. Yay!
 This also created a bunch of .gcda files

48

A real example - xSDKTrilinos

 Collect coverage data for the tests using lcov
 lcov --capture --directory . --output-file

xSDKTrilinos.info

 This creates xSDKTrilinos.info

 lcov processes 634 gcda files in this step, so this does take a few
minutes

49

A real example - xSDKTrilinos

 Generate html output using genhtml
 genhtml xSDKTrilinos.info --output-directory

xSDKTrilinos

 This generates html files in the directory xSDKTrilinos

 This step takes a few minutes too

50

A real example - xSDKTrilinos

51

Let’s take a look at the solver interface.

A real example - xSDKTrilinos

52

A real example - xSDKTrilinos

53

Oops. I never tested the RIGHT preconditioning branch.

DOCUMENTATION

54

Why is documentation important?

 To identify the purpose of the software and its requirements

 To clarify what each component does, what is needed to
maintain it, and how it can be reused elsewhere

 To provide user support
 Minimizes unnecessary handholding of users

 To ensure that software is used within its region of validity
 Minimizes possibility of producing spurious scientific results

55

Categories of documentation

 Users guide

 Reference manual
 List of the interfaces and routines and explanation of functionality

 Can be generated automatically from code

 Readme files

 Installation guide

 Tutorials

56

All software needs documentation

Not all software needs a users guide

How does Trilinos handle
documentation?

 Each package does it differently

 User manuals
 MueLu (algebraic multigrid)

 AztecOO (Krylov solvers)

 Teuchos RCP (reference counted pointers)

 Publicly available tutorials, presentations, and slides
 Tpetra (MPI+X linear albebra)

 Kokkos*

 Well commented examples

 Automatically generated html documentation

57

Doxygen

 One approach to producing “reference manual”-like
documentation

 Automatically generates html documentation from comments
in source code

 Easy to update documentation when source code is updated

 doxywizard - GUI frontend for doxygen

58

A simple doxygen example

 Add some comments to isEven.hpp

59

A simple doxygen example

 Create an index page (index.doc)

60

A simple doxygen example

61

A simple doxygen example

62

A simple doxygen example

63

A simple doxygen example

64

A simple doxygen example

65

A simple doxygen example

66

A simple doxygen example

67

A simple doxygen example

68

A simple doxygen example

69

Summary

 Testing and documentation are very important

 There are many different types of tests that should be
included in your test suite

 Code coverage tools can help you figure out where existing
testing is insufficient

 Documentation does not have to mean “user manual”

 Tools such as doxygen can help you write documentation

70

Thanks for Participating!

• Make sure you get counted. Please visit http://bit.ly/hpcbp-s04

• We want to improve this series. Please send feedback to

HPCBestPractices+session04@gmail.com

• Slides and a recording will be available from the OLCF training web site:
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

Session 5: How the HPC Environment is Different from the Desktop (and Why)

Date: Wednesday, July 14, 2016

Time: 1:00-2:00 pm ET

Presenter: Katherine Riley, Argonne Leadership Computing Facility

Next Webinar

For updates, please register (if you haven’t already)
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

2016-06-16

SC16 Tutorial: “Testing of HPC Scientific Software”

https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

