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Before we start
• Since I cannot see anyone in this presentation format, feel free to

totally vegout, use profane gestures, etc

• I am not proselytizing; these are some techniques that have
worked well for us over the last 20+ years; if you violently
disagree see (1)

• I will try to keep this short and sweet, in the end there is only 1
concept I would like you to take away from this—assuming item
(1) does not apply

• I promise that there will be no distracting manager clip-art, sliding
images, dissolution, etc.

• If you require sparkly things in the presentation to keep you
awake, please refer back to item (1).
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Outline

1 Research and Software Development

2 The Complete Development Lifecycle

3 Unit Testing

4 Design-by-ContractTM

5 Summary
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Research and HPC Code

Challenge
Manage SQE with discovery

Posit
Consider a new algorithm implemented in a multidimensional,
parallel code.
• Theory predicts second-order convergence.
• Computational results are first-order instead of second-order.
• Is this a code bug or an error in analysis?
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Research and HPC Code

• In other words, SQE and methods research are not only
compatible, they are essential

• This is especially true for parallel scientific software, which is
much more difficult to design, test, and analyze than serial
software.

• We are interested in this case in performing software verification
• Software verification is a method for removing defects at code

construction time
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What is SQE

• SQE is the practice of managing the cost and quality of a
software product

• Guiding Principle
The cost of defect resolution increases with time from defect
introduction?

• Things fall apart
I Defects in model development
I Defects in algorithmic selection
I Defects in requirements
I Defects in implementation
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How to mitigate defects

• There are many methods for defect management
• Three techniques we use for software verification in an HPC

environment
I The complete development lifecycle
I Unit-testing
I Design-by-ContractTM

• This list is by no means exhaustive (or a complete SQE process)
I Notably missing, reviews
I We do them, they work, but I’m not here to talk about them

• However, taken together these can help catch defects before
they become an unbearable expense
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Requirements Management in Scientific Software

• Requirements can be very difficult to pin down in scientific
software development:

I the vector keeps changing as new things are learned
I as a community we often know what we want, but aren’t necessarily good

at saying it

• Software verification helps disambiguate language-based
requirements into functional specifications

• As requirements change, software verification helps ensure that
the software is keeping pace.

• Agility is key in scientific software development:
I rapid prototyping
I testing new methods, algorithms, and features
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Complete Development Lifecycle

• The developer is responsible for the complete implementation of
a feature including:

I Requirements
I Derivation
I Construction
I Deployment

• Documentation and verification is implicit in each phase
• Reviews and team collaboration are essential

Developers are responsible for all phases of code development
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Unit Testing

Unit testing is a form of software verification
• It ensures that each part of the software performs its contracted

task
• The effectiveness of unit-testing is greatly enhanced by the

following two code design practices:
I Acyclic code design
I Design-by-ContractTM(see later)

We practice a method of unit testing in which the unit test is written
either before, or concurrently with, the executable code.
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Acyclic Code Design

RTK_Cell

RTK_Array
T

RTK_Geometry
T

RTK_Core_Geometry
<T:RTK_Array<RTK_Array<RTK_Cell>>>

<<bind>>

Physics
Geometry

Domain_Transporter
Geometry, Physics

Boundary_Mesh

Tallier
Geometry, Physics

Source_Transporter
Geometry, Physics

Solver
Geometry, Physics

Eigenvalue_Solver
Geometry, Physics

Fixed_Source_Solver
Geometry, Physics

DR_Source_Transporter
Geometry, Physics

DD_Source_Transporter
Geometry, Physics

There are no physical or logical cyclic dependencies

Allows hierarchical testing
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An Example—Reactor Geometry

Figure: Small modular reactor core model.
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An Example—Reactor Geometry

1 Sample starting neutron

2 Sample distance to collision

dcol =
log(ξ )
σ(r,E)

3 Calculate distance to boundary
4 Move particle
5 Tally state data

φ =
1
V ∑

k
lk

6 Repeat 2–5
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First Level—RTK_Cell

RTK_Cell

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ matid()

RTK_Array

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ find_object()
+matid()

T Lattice
<T:RTK_Cell>

<<bind>>

Core
<T:Lattice>

<<bind>>

RTK_Geometry

+ initalize()
+ distance_to_boundary()
+ move_across_surface()
+ move_within_cell()
+ position()
+ direction()
+ change_direction()
+ reflect()
+ boundary_state()

T

RTK_Core_Geometry
<T:Core>

<<bind>>
• Here is the class diagram for the

RTK_Geometry part of the code

• Starting at the lowest level of the
class hierarchy, we can write a unit
test that unambiguously tests
RTK_Cell

• There are many frameworks that
support this—GoogleTest,
TeuchosTest (Trilinos)

• Some extra details are required to
support advanced architectures
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tstRTK Cell.cc—The old way

#include "Nemesis/gtest/nemesis_gtest.hh"

TEST(SingleShell, track)

{

RTK_Cell pin1(1, 0.54, 10, 1.26, 14.28);

pin1.initialize(Vector(0.0, 0.55, 0.0), state);

EXPECT_EQ(1, state.region);

EXPECT_EQ(0, state.segment);

EXPECT_EQ(1, pin1.cell(state.region, state.segment));

Vector r = Vector(0.0, 0.59, 0.0);

Vector omega = Vector(1.0, 0.0, 0.0);

pin1.initialize(r, state);

pin1.distance_to_boundary(r, omega, state);

EXPECT_SOFTEQ(state.dist_to_next_region, 0.63, 1.e-12);

EXPECT_EQ(Geo_State::PLUS_X, state.exiting_face);

EXPECT_EQ(1, state.region);

// ...

}

• In MP/multithreaded
codes this way
straitforward

• Instantiate the object and
test its state and behavior

• “garbage-in/garbage-out”

• “Hand” calculations
stored in repository using
Jupyter Notebook

• On heterogeneous
computing environments
extra work is required
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tstRTK Cell.cc—The “new” way

#include "Nemesis/gtest/nemesis_gtest.hh"

#include "RTK_Cell_Tester.hh"

TEST_F(Single_Shell, construction)

{

construct();

}

TEST_F(Single_Shell, tracking)

{

track();

}

Host-side driver—host-only
test code and defined tests
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RTK Cell Tester.hh

#include "Nemesis/gtest/Gtest_Functions.hh"

#include "Geometria/rtk/RTK_Cell.hh"

class Single_Shell : public Base

{

protected:

void SetUp()

{

SP_Cell pin1 = std::make_shared<RTK_Cell>(1, 0.54, 10, 1.26, 14.28);

SP_Cell pin2 = std::make_shared<RTK_Cell>(1, 0.45, 2, 1.2, 14.28);

pins = {pin1, pin2};

}

void construct();

void track();

Vec_Cell pins;

};

Bridge code—connects
host-side driver with kernel
implementation
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RTK Cell Tester.cu

void Single_Shell::track()

{

geometria_cuda::RTK_Cell_DMM dmm(*pins[1]);

auto pin = dmm.device_instance();

thrust::device_vector<int> ints(50, -1);

thrust::device_vector<double> dbls(50, -1);

single_shell_kernel2<<<1,1>>>(

pin, ints.data().get(), dbls.data().get());

thrust::host_vector<int> rints(ints.begin(),

ints.end());

thrust::host_vector<double> rdbls(dbls.begin(),

dbls.end());

int n = 0, m = 0;

double eps = 1.0e-6;

EXPECT_EQ(1, rints[n++]);

EXPECT_SOFTEQ(rdbls[m++], 1.2334036420, eps);

EXPECT_EQ(State::INTERNAL, rints[n++]);

EXPECT_EQ(0, rints[n++]);

// ...

__global__

void single_shell_kernel2(

geometria_cuda::RTK_Cell pin,

int *ints,

double *dbls)

{

State state;

Vector r, omega;

int n = 0, m = 0;

// Pin intersection tests

{

r = { 0.43, 0.51, 1.20};

omega = { -0.07450781, -0.17272265, 0.98214840};

pin.initialize(r, state);

ints[n++] = state.region;

pin.distance_to_boundary(r, omega, state);

ints[n++] = state.exiting_face;

ints[n++] = state.next_region;

dbls[m++] = state.dist_to_next_region;

}

// ...
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Test Output

Testing on 1 processors

Exnihilo 6.2 (branch ’omnibus_cuda’ #20e8c851 on 2017JUL10) [debug] [DBC=7]

SCALE 6.3 (r23123: #c743536b on 2017JUL06) [debug] [DBC=7]

[==========] Running 2 tests from 1 test case.

[----------] Global test environment set-up.

[----------] 2 tests from Single_Shell

[ RUN ] Single_Shell.construction

[ OK ] Single_Shell.construction (381 ms)

[ RUN ] Single_Shell.tracking

[ OK ] Single_Shell.tracking (2 ms)

[----------] 2 tests from Single_Shell (383 ms total)

[----------] Global test environment tear-down

[==========] 2 tests from 1 test case ran. (384 ms total)

[ PASSED ] 2 tests.

In ./GeometriaCUDA_tstRTK_Cell.exe, overall test result: PASSED

PACKAGE_ADD_CUDA_LIBRARY(

Geometria_cuda_test_cuda

SOURCES RTK_Array_Tester.cu

DEPLIBS Geometria_cuda

TESTONLY)

ADD_NEMESIS_TEST(tstRTK_Cell.cc NP 1

DEPLIBS Geometria_cuda_test_cuda)

• Integrated into CMake build system

• Compile-Edit-Debug development
cycle

• Continuous integration
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Second Level—RTK_Array

RTK_Cell

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ matid()

RTK_Array

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ find_object()
+matid()

T Lattice
<T:RTK_Cell>

<<bind>>

Core
<T:Lattice>

<<bind>>

RTK_Geometry

+ initalize()
+ distance_to_boundary()
+ move_across_surface()
+ move_within_cell()
+ position()
+ direction()
+ change_direction()
+ reflect()
+ boundary_state()

T

RTK_Core_Geometry
<T:Core>

<<bind>>

tstRTK_Array.cc

• Having verified RTK_Cell we proceed
to the next level

• Individual unit-tests work their way up
dependency chain

• After completion of a feature, unit
tests remain in the code base for both
regression and continuous integration
testing
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Testing tools

• Python and Jupyter
notebook are useful for
generating “by-hand”
results

• Easily stored with code so
that tests can be modified
and examined

CMakeLists.txt

SVDTestBase.hh

SVDTestBase.cc

nb/SVDTestBase.ipynb

nb/tstHybrid_Data_Field.ipynb

tstAdjoint_Builder.cc

tstHybrid_Data_Field.cc

tstSVD_Operator.cc

tstSVD_Solver.cc
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Design-by-ContractTM

• DBC enforces a function “contract” by testing the input,
execution, and output of a function.

• In other words, DBC provides a software mechanism for
enforcing a design contract on a function.

• DBC is also known as Programming by Contract and Contract
First Development.

• See Meyer, Bertrand: Design by Contract, in Advances in
Object-Oriented Software Engineering, eds. D. Mandrioli and B.
Meyer, Prentice Hall, 1991, pp. 1-50 for more details.
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DBC Implementation

• Some languages (Eiffel, GNU C2) have built in support for DBC.
• DBC is implemented in our codes using M4 (FORTRAN) or CPP

(C/C++).
• Types in C++ or FORTRAN modules are automatically checked

by the compiler:
I Require: input conditions
I Check: execution conditions
I Ensure: output conditions

• DBC macros can be toggled at compile time to avoid
performance costs associated with in-code tests.

• We also support device implementations
23 Defects. HPC Software



A DBC Example

• You are asked to provide a routine to
calculate square roots—ok this is a
manufactured example

• Being a clever person you realize you can
solve this as a nonlinear problem using
Newton’s method:

xn+1 = xn +
f (xn)

f ′(xn)
,

where f (xn) = x2
n −S

• You deliver your unit-tested, verified solution:

double my_sqrt(double S)

{

double xn = 1.0;

for (int n = 0; n < 10; ++n)

{

xn = 0.5 * (xn + S / xn);

}

return xn;

}
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But there’s trouble brewing in science

• Some indeterminate time later—after you’ve moved onto much
more exciting things—you start getting complaints or bug reports

• John has spent 2 weeks tracking spurious results down to your
routine that returned a value of 200.514691 (ε > 10−6) for
40200.25

• Tara also has a problem with you because she is doing Spherical
Harmonics in complex space and tried to take the square root of
−4 and got −4.8017607

• You reply that the routine was thoroughly tested and is
performing as designed, so what gives

• Pandemonium ensues
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This is a defect resulting from ambigous
requirements

• Nothing is more common in scientific
programming

• How could DBC have helped?

• Lets look at how adding DBC may
have aided things

• First, we decide we will not handle
complex math

• Second, we check for a tolerance at
the end

double my_sqrt(double S)

{

Require(S > 0.0);

double xn = 1.0;

for (int n = 0; n < 10; ++n)

{

xn = 0.5 * (xn + S / xn);

}

Ensure(std::fabs(xn*xn - S) > 1.0e-6 * S)

return xn;

}
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Moral of the story

• This still won’t win any programmer-of-the-year awards, but you
get the point

• Adding DBC “contracts” allows both developers and clients to
codify potentially ambiguous requirements

• In particular, at review time DBC can help a reviewer determine if
the requested service is doing what is required

• Downstream, if the function is used in manner that is outside of
design parameters, at least we know
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Real DBC Example—distance_to_boundary

__device__

void RTK_Cell::distance_to_boundary(

const Space_Vector &r,

const Space_Vector &omega,

Geo_State_t &state) const

{

DEVICE_REQUIRE(soft_equiv(vector_magnitude(omega), 1., 1.e-6));

DEVICE_REQUIRE(omega[X]<0.0 ?

r[X] >= d_extent[X][LO] :

r[X] <= d_extent[X][HI]);

DEVICE_REQUIRE(omega[Y]<0.0 ?

r[Y] >= d_extent[Y][LO] :

r[Y] <= d_extent[Y][HI]);

DEVICE_REQUIRE(omega[Z]<0.0 ?

r[Z] >= 0.0 :

r[Z] <= d_z);

// ...

DEVICE_CHECK(db >= 0.0);

// ...

DEVICE_ENSURE(state.dist_to_next_region >= 0.0);

DEVICE_ENSURE(state.exiting_face == Geo_State_t::INTERNAL ?

state.next_region >= 0 : true);

DEVICE_ENSURE(state.next_segment >= 0 && state.next_segment < d_segments);

• Valid argument types are
checked by the compiler

• DEVICE_REQUIRE checks that
input arguments are and
object is in a valid state

• DEVICE_CHECK in-function
checks

• DEVICE_ENSURE object and
arguments are in a valid state
at output
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Software Verification Advantages

The purpose of unit-testing is to provide software verification as
close to code construction time as possible.

• finds code defects at construction time
• provides an automated, explicit review of the code and enables

Continuous Integration
I a mechanism for review is to have one developer write the test and the

primary developer writes the code
I when the test passes, the software component is automatically reviewed
I provides a testing basis for Continuous Integration
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Software Verification Advantages

• makes porting to new platforms easier
• easier to find esoteric compile/link-time errors
• DBC can be used to verify interfaces to client code
• DBC incurs no cost in production code
• easier to run profiling, memory, and development tools on unit

tests than on a full executable
• unambiguous statement of code design requirements
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Software Verification Advantages

• provides a sanity check on code refactors
• incorporating timing data allows a time-history profile of code

performance to be compiled:
I run automated unit-tests nightly
I as new code is developed compare timing histories to catch inefficient or

costly implementations
• provides simplified “usage” documentation for a piece of code

I in our example, a new developer could easily learn the mechanics of the
RTK_Geometry component by studying the unit tests

31 Defects. HPC Software



Disadvantages and Costs

• The most significant disadvantage is the perceived cost associated with unit
tests

• Our experience shows a cost of between 4-8 to 1 in writing code with unit tests
• This cost is minimal compared to the debugging cost incurred throughout a

product lifecycle
• In other words, the disadvantages are few unless you have developers who

unfailingly write “Bug-Free Code”
• Codes that are not structured according to acyclic design concepts may have

prohibitive unit-test costs
• Finding and abiding the 80/20 rule takes developer experience
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Yes, we actually do this
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Final Thoughts

• Review one takeaway: The cost of defect resolution increases
with time from defect introduction

• Use this as a guiding principle to improve productivity and tailor it
to fit your needs—you don’t need to do what we or others do!

• Applying this principle will sometimes add up-front costs, but it
has the advantage of catching defects when they are introduced;
this will result in significant savings downstream
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