
Managing Defects in HPC Software Development

Presented to
OLCF Webinar Series

Tom Evans
ORNL, PI ExaSMR ECP Applications Project

November 1, 2017

Before we start
• Since I cannot see anyone in this presentation format, feel free to

totally vegout, use profane gestures, etc

• I am not proselytizing; these are some techniques that have
worked well for us over the last 20+ years; if you violently
disagree see (1)

• I will try to keep this short and sweet, in the end there is only 1
concept I would like you to take away from this—assuming item
(1) does not apply

• I promise that there will be no distracting manager clip-art, sliding
images, dissolution, etc.

• If you require sparkly things in the presentation to keep you
awake, please refer back to item (1).

2 Defects. HPC Software

Before we start
• Since I cannot see anyone in this presentation format, feel free to

totally vegout, use profane gestures, etc
• I am not proselytizing; these are some techniques that have

worked well for us over the last 20+ years; if you violently
disagree see (1)

• I will try to keep this short and sweet, in the end there is only 1
concept I would like you to take away from this—assuming item
(1) does not apply

• I promise that there will be no distracting manager clip-art, sliding
images, dissolution, etc.

• If you require sparkly things in the presentation to keep you
awake, please refer back to item (1).

2 Defects. HPC Software

Before we start
• Since I cannot see anyone in this presentation format, feel free to

totally vegout, use profane gestures, etc
• I am not proselytizing; these are some techniques that have

worked well for us over the last 20+ years; if you violently
disagree see (1)

• I will try to keep this short and sweet, in the end there is only 1
concept I would like you to take away from this—assuming item
(1) does not apply

• I promise that there will be no distracting manager clip-art, sliding
images, dissolution, etc.

• If you require sparkly things in the presentation to keep you
awake, please refer back to item (1).

2 Defects. HPC Software

Before we start
• Since I cannot see anyone in this presentation format, feel free to

totally vegout, use profane gestures, etc
• I am not proselytizing; these are some techniques that have

worked well for us over the last 20+ years; if you violently
disagree see (1)

• I will try to keep this short and sweet, in the end there is only 1
concept I would like you to take away from this—assuming item
(1) does not apply

• I promise that there will be no distracting manager clip-art, sliding
images, dissolution, etc.

• If you require sparkly things in the presentation to keep you
awake, please refer back to item (1).

2 Defects. HPC Software

Before we start
• Since I cannot see anyone in this presentation format, feel free to

totally vegout, use profane gestures, etc
• I am not proselytizing; these are some techniques that have

worked well for us over the last 20+ years; if you violently
disagree see (1)

• I will try to keep this short and sweet, in the end there is only 1
concept I would like you to take away from this—assuming item
(1) does not apply

• I promise that there will be no distracting manager clip-art, sliding
images, dissolution, etc.

• If you require sparkly things in the presentation to keep you
awake, please refer back to item (1).

2 Defects. HPC Software

Outline

1 Research and Software Development

2 The Complete Development Lifecycle

3 Unit Testing

4 Design-by-ContractTM

5 Summary

3 Defects. HPC Software

Research and HPC Code

Challenge
Manage SQE with discovery

Posit
Consider a new algorithm implemented in a multidimensional,
parallel code.
• Theory predicts second-order convergence.
• Computational results are first-order instead of second-order.
• Is this a code bug or an error in analysis?

4 Defects. HPC Software

Research and HPC Code

Challenge
Manage SQE with discovery

Posit
Consider a new algorithm implemented in a multidimensional,
parallel code.
• Theory predicts second-order convergence.
• Computational results are first-order instead of second-order.
• Is this a code bug or an error in analysis?

4 Defects. HPC Software

Research and HPC Code

Challenge
Manage SQE with discovery

Posit
Consider a new algorithm implemented in a multidimensional,
parallel code.
• Theory predicts second-order convergence.
• Computational results are first-order instead of second-order.
• Is this a code bug or an error in analysis?

4 Defects. HPC Software

Research and HPC Code

Challenge
Manage SQE with discovery

Posit
Consider a new algorithm implemented in a multidimensional,
parallel code.
• Theory predicts second-order convergence.
• Computational results are first-order instead of second-order.
• Is this a code bug or an error in analysis?

4 Defects. HPC Software

Research and HPC Code

• In other words, SQE and methods research are not only
compatible, they are essential

• This is especially true for parallel scientific software, which is
much more difficult to design, test, and analyze than serial
software.

• We are interested in this case in performing software verification
• Software verification is a method for removing defects at code

construction time

5 Defects. HPC Software

What is SQE

• SQE is the practice of managing the cost and quality of a
software product

• Guiding Principle
The cost of defect resolution increases with time from defect
introduction?

• Things fall apart
I Defects in model development
I Defects in algorithmic selection
I Defects in requirements
I Defects in implementation

6 Defects. HPC Software

How to mitigate defects

• There are many methods for defect management
• Three techniques we use for software verification in an HPC

environment
I The complete development lifecycle
I Unit-testing
I Design-by-ContractTM

• This list is by no means exhaustive (or a complete SQE process)
I Notably missing, reviews
I We do them, they work, but I’m not here to talk about them

• However, taken together these can help catch defects before
they become an unbearable expense

7 Defects. HPC Software

Requirements Management in Scientific Software

• Requirements can be very difficult to pin down in scientific
software development:

I the vector keeps changing as new things are learned
I as a community we often know what we want, but aren’t necessarily good

at saying it

• Software verification helps disambiguate language-based
requirements into functional specifications

• As requirements change, software verification helps ensure that
the software is keeping pace.

• Agility is key in scientific software development:
I rapid prototyping
I testing new methods, algorithms, and features

8 Defects. HPC Software

Complete Development Lifecycle

• The developer is responsible for the complete implementation of
a feature including:

I Requirements
I Derivation
I Construction
I Deployment

• Documentation and verification is implicit in each phase
• Reviews and team collaboration are essential

Developers are responsible for all phases of code development

9 Defects. HPC Software

Unit Testing

Unit testing is a form of software verification
• It ensures that each part of the software performs its contracted

task
• The effectiveness of unit-testing is greatly enhanced by the

following two code design practices:
I Acyclic code design
I Design-by-ContractTM(see later)

We practice a method of unit testing in which the unit test is written
either before, or concurrently with, the executable code.

10 Defects. HPC Software

Acyclic Code Design

RTK_Cell

RTK_Array
T

RTK_Geometry
T

RTK_Core_Geometry
<T:RTK_Array<RTK_Array<RTK_Cell>>>

<<bind>>

Physics
Geometry

Domain_Transporter
Geometry, Physics

Boundary_Mesh

Tallier
Geometry, Physics

Source_Transporter
Geometry, Physics

Solver
Geometry, Physics

Eigenvalue_Solver
Geometry, Physics

Fixed_Source_Solver
Geometry, Physics

DR_Source_Transporter
Geometry, Physics

DD_Source_Transporter
Geometry, Physics

There are no physical or logical cyclic dependencies

Allows hierarchical testing

11 Defects. HPC Software

An Example—Reactor Geometry

Figure: Small modular reactor core model.

12 Defects. HPC Software

An Example—Reactor Geometry

1 Sample starting neutron

2 Sample distance to collision

dcol =
log(ξ)
σ(r,E)

3 Calculate distance to boundary
4 Move particle
5 Tally state data

φ =
1
V ∑

k
lk

6 Repeat 2–5

13 Defects. HPC Software

An Example—Reactor Geometry

1 Sample starting neutron
2 Sample distance to collision

dcol =
log(ξ)
σ(r,E)

3 Calculate distance to boundary
4 Move particle
5 Tally state data

φ =
1
V ∑

k
lk

6 Repeat 2–5

13 Defects. HPC Software

An Example—Reactor Geometry

1 Sample starting neutron
2 Sample distance to collision

dcol =
log(ξ)
σ(r,E)

3 Calculate distance to boundary

4 Move particle
5 Tally state data

φ =
1
V ∑

k
lk

6 Repeat 2–5

13 Defects. HPC Software

An Example—Reactor Geometry

Process collision
lk

1 Sample starting neutron
2 Sample distance to collision

dcol =
log(ξ)
σ(r,E)

3 Calculate distance to boundary
4 Move particle
5 Tally state data

φ =
1
V ∑

k
lk

6 Repeat 2–5

13 Defects. HPC Software

An Example—Reactor Geometry

x

1 Sample starting neutron
2 Sample distance to collision

dcol =
log(ξ)
σ(r,E)

3 Calculate distance to boundary
4 Move particle
5 Tally state data

φ =
1
V ∑

k
lk

6 Repeat 2–5

13 Defects. HPC Software

First Level—RTK_Cell

RTK_Cell

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ matid()

RTK_Array

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ find_object()
+matid()

T Lattice
<T:RTK_Cell>

<<bind>>

Core
<T:Lattice>

<<bind>>

RTK_Geometry

+ initalize()
+ distance_to_boundary()
+ move_across_surface()
+ move_within_cell()
+ position()
+ direction()
+ change_direction()
+ reflect()
+ boundary_state()

T

RTK_Core_Geometry
<T:Core>

<<bind>>
• Here is the class diagram for the

RTK_Geometry part of the code

• Starting at the lowest level of the
class hierarchy, we can write a unit
test that unambiguously tests
RTK_Cell

• There are many frameworks that
support this—GoogleTest,
TeuchosTest (Trilinos)

• Some extra details are required to
support advanced architectures

14 Defects. HPC Software

First Level—RTK_Cell

RTK_Cell

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ matid()

RTK_Array

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ find_object()
+matid()

T Lattice
<T:RTK_Cell>

<<bind>>

Core
<T:Lattice>

<<bind>>

RTK_Geometry

+ initalize()
+ distance_to_boundary()
+ move_across_surface()
+ move_within_cell()
+ position()
+ direction()
+ change_direction()
+ reflect()
+ boundary_state()

T

RTK_Core_Geometry
<T:Core>

<<bind>>

tstRTK_Cell.cc

• Here is the class diagram for the
RTK_Geometry part of the code

• Starting at the lowest level of the
class hierarchy, we can write a unit
test that unambiguously tests
RTK_Cell

• There are many frameworks that
support this—GoogleTest,
TeuchosTest (Trilinos)

• Some extra details are required to
support advanced architectures

14 Defects. HPC Software

First Level—RTK_Cell

RTK_Cell

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ matid()

RTK_Array

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ find_object()
+matid()

T Lattice
<T:RTK_Cell>

<<bind>>

Core
<T:Lattice>

<<bind>>

RTK_Geometry

+ initalize()
+ distance_to_boundary()
+ move_across_surface()
+ move_within_cell()
+ position()
+ direction()
+ change_direction()
+ reflect()
+ boundary_state()

T

RTK_Core_Geometry
<T:Core>

<<bind>>

tstRTK_Cell.cc

• Here is the class diagram for the
RTK_Geometry part of the code

• Starting at the lowest level of the
class hierarchy, we can write a unit
test that unambiguously tests
RTK_Cell

• There are many frameworks that
support this—GoogleTest,
TeuchosTest (Trilinos)

• Some extra details are required to
support advanced architectures

14 Defects. HPC Software

tstRTK Cell.cc—The old way

#include "Nemesis/gtest/nemesis_gtest.hh"

TEST(SingleShell, track)

{

RTK_Cell pin1(1, 0.54, 10, 1.26, 14.28);

pin1.initialize(Vector(0.0, 0.55, 0.0), state);

EXPECT_EQ(1, state.region);

EXPECT_EQ(0, state.segment);

EXPECT_EQ(1, pin1.cell(state.region, state.segment));

Vector r = Vector(0.0, 0.59, 0.0);

Vector omega = Vector(1.0, 0.0, 0.0);

pin1.initialize(r, state);

pin1.distance_to_boundary(r, omega, state);

EXPECT_SOFTEQ(state.dist_to_next_region, 0.63, 1.e-12);

EXPECT_EQ(Geo_State::PLUS_X, state.exiting_face);

EXPECT_EQ(1, state.region);

// ...

}

• In MP/multithreaded
codes this way
straitforward

• Instantiate the object and
test its state and behavior

• “garbage-in/garbage-out”

• “Hand” calculations
stored in repository using
Jupyter Notebook

• On heterogeneous
computing environments
extra work is required

15 Defects. HPC Software

tstRTK Cell.cc—The “new” way

#include "Nemesis/gtest/nemesis_gtest.hh"

#include "RTK_Cell_Tester.hh"

TEST_F(Single_Shell, construction)

{

construct();

}

TEST_F(Single_Shell, tracking)

{

track();

}

Host-side driver—host-only
test code and defined tests

16 Defects. HPC Software

RTK Cell Tester.hh

#include "Nemesis/gtest/Gtest_Functions.hh"

#include "Geometria/rtk/RTK_Cell.hh"

class Single_Shell : public Base

{

protected:

void SetUp()

{

SP_Cell pin1 = std::make_shared<RTK_Cell>(1, 0.54, 10, 1.26, 14.28);

SP_Cell pin2 = std::make_shared<RTK_Cell>(1, 0.45, 2, 1.2, 14.28);

pins = {pin1, pin2};

}

void construct();

void track();

Vec_Cell pins;

};

Bridge code—connects
host-side driver with kernel
implementation

17 Defects. HPC Software

RTK Cell Tester.cu

void Single_Shell::track()

{

geometria_cuda::RTK_Cell_DMM dmm(*pins[1]);

auto pin = dmm.device_instance();

thrust::device_vector<int> ints(50, -1);

thrust::device_vector<double> dbls(50, -1);

single_shell_kernel2<<<1,1>>>(

pin, ints.data().get(), dbls.data().get());

thrust::host_vector<int> rints(ints.begin(),

ints.end());

thrust::host_vector<double> rdbls(dbls.begin(),

dbls.end());

int n = 0, m = 0;

double eps = 1.0e-6;

EXPECT_EQ(1, rints[n++]);

EXPECT_SOFTEQ(rdbls[m++], 1.2334036420, eps);

EXPECT_EQ(State::INTERNAL, rints[n++]);

EXPECT_EQ(0, rints[n++]);

// ...

__global__

void single_shell_kernel2(

geometria_cuda::RTK_Cell pin,

int *ints,

double *dbls)

{

State state;

Vector r, omega;

int n = 0, m = 0;

// Pin intersection tests

{

r = { 0.43, 0.51, 1.20};

omega = { -0.07450781, -0.17272265, 0.98214840};

pin.initialize(r, state);

ints[n++] = state.region;

pin.distance_to_boundary(r, omega, state);

ints[n++] = state.exiting_face;

ints[n++] = state.next_region;

dbls[m++] = state.dist_to_next_region;

}

// ...

18 Defects. HPC Software

Test Output

Testing on 1 processors

Exnihilo 6.2 (branch ’omnibus_cuda’ #20e8c851 on 2017JUL10) [debug] [DBC=7]

SCALE 6.3 (r23123: #c743536b on 2017JUL06) [debug] [DBC=7]

[==========] Running 2 tests from 1 test case.

[----------] Global test environment set-up.

[----------] 2 tests from Single_Shell

[RUN] Single_Shell.construction

[OK] Single_Shell.construction (381 ms)

[RUN] Single_Shell.tracking

[OK] Single_Shell.tracking (2 ms)

[----------] 2 tests from Single_Shell (383 ms total)

[----------] Global test environment tear-down

[==========] 2 tests from 1 test case ran. (384 ms total)

[PASSED] 2 tests.

In ./GeometriaCUDA_tstRTK_Cell.exe, overall test result: PASSED

PACKAGE_ADD_CUDA_LIBRARY(

Geometria_cuda_test_cuda

SOURCES RTK_Array_Tester.cu

DEPLIBS Geometria_cuda

TESTONLY)

ADD_NEMESIS_TEST(tstRTK_Cell.cc NP 1

DEPLIBS Geometria_cuda_test_cuda)

• Integrated into CMake build system

• Compile-Edit-Debug development
cycle

• Continuous integration

19 Defects. HPC Software

Second Level—RTK_Array

RTK_Cell

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ matid()

RTK_Array

+ initialize()
+ distance_to_boundary()
+ update_state()
+ cross_surface()
+ find_object()
+matid()

T Lattice
<T:RTK_Cell>

<<bind>>

Core
<T:Lattice>

<<bind>>

RTK_Geometry

+ initalize()
+ distance_to_boundary()
+ move_across_surface()
+ move_within_cell()
+ position()
+ direction()
+ change_direction()
+ reflect()
+ boundary_state()

T

RTK_Core_Geometry
<T:Core>

<<bind>>

tstRTK_Array.cc

• Having verified RTK_Cell we proceed
to the next level

• Individual unit-tests work their way up
dependency chain

• After completion of a feature, unit
tests remain in the code base for both
regression and continuous integration
testing

20 Defects. HPC Software

Testing tools

• Python and Jupyter
notebook are useful for
generating “by-hand”
results

• Easily stored with code so
that tests can be modified
and examined

CMakeLists.txt

SVDTestBase.hh

SVDTestBase.cc

nb/SVDTestBase.ipynb

nb/tstHybrid_Data_Field.ipynb

tstAdjoint_Builder.cc

tstHybrid_Data_Field.cc

tstSVD_Operator.cc

tstSVD_Solver.cc

21 Defects. HPC Software

Design-by-ContractTM

• DBC enforces a function “contract” by testing the input,
execution, and output of a function.

• In other words, DBC provides a software mechanism for
enforcing a design contract on a function.

• DBC is also known as Programming by Contract and Contract
First Development.

• See Meyer, Bertrand: Design by Contract, in Advances in
Object-Oriented Software Engineering, eds. D. Mandrioli and B.
Meyer, Prentice Hall, 1991, pp. 1-50 for more details.

22 Defects. HPC Software

DBC Implementation

• Some languages (Eiffel, GNU C2) have built in support for DBC.
• DBC is implemented in our codes using M4 (FORTRAN) or CPP

(C/C++).
• Types in C++ or FORTRAN modules are automatically checked

by the compiler:
I Require: input conditions
I Check: execution conditions
I Ensure: output conditions

• DBC macros can be toggled at compile time to avoid
performance costs associated with in-code tests.

• We also support device implementations
23 Defects. HPC Software

A DBC Example

• You are asked to provide a routine to
calculate square roots—ok this is a
manufactured example

• Being a clever person you realize you can
solve this as a nonlinear problem using
Newton’s method:

xn+1 = xn +
f (xn)

f ′(xn)
,

where f (xn) = x2
n −S

• You deliver your unit-tested, verified solution:

double my_sqrt(double S)

{

double xn = 1.0;

for (int n = 0; n < 10; ++n)

{

xn = 0.5 * (xn + S / xn);

}

return xn;

}

24 Defects. HPC Software

A DBC Example

• You are asked to provide a routine to
calculate square roots—ok this is a
manufactured example

• Being a clever person you realize you can
solve this as a nonlinear problem using
Newton’s method:

xn+1 = xn +
f (xn)

f ′(xn)
,

where f (xn) = x2
n −S

• You deliver your unit-tested, verified solution:

double my_sqrt(double S)

{

double xn = 1.0;

for (int n = 0; n < 10; ++n)

{

xn = 0.5 * (xn + S / xn);

}

return xn;

}

24 Defects. HPC Software

But there’s trouble brewing in science

• Some indeterminate time later—after you’ve moved onto much
more exciting things—you start getting complaints or bug reports

• John has spent 2 weeks tracking spurious results down to your
routine that returned a value of 200.514691 (ε > 10−6) for
40200.25

• Tara also has a problem with you because she is doing Spherical
Harmonics in complex space and tried to take the square root of
−4 and got −4.8017607

• You reply that the routine was thoroughly tested and is
performing as designed, so what gives

• Pandemonium ensues

25 Defects. HPC Software

But there’s trouble brewing in science

• Some indeterminate time later—after you’ve moved onto much
more exciting things—you start getting complaints or bug reports

• John has spent 2 weeks tracking spurious results down to your
routine that returned a value of 200.514691 (ε > 10−6) for
40200.25

• Tara also has a problem with you because she is doing Spherical
Harmonics in complex space and tried to take the square root of
−4 and got −4.8017607

• You reply that the routine was thoroughly tested and is
performing as designed, so what gives

• Pandemonium ensues

25 Defects. HPC Software

But there’s trouble brewing in science

• Some indeterminate time later—after you’ve moved onto much
more exciting things—you start getting complaints or bug reports

• John has spent 2 weeks tracking spurious results down to your
routine that returned a value of 200.514691 (ε > 10−6) for
40200.25

• Tara also has a problem with you because she is doing Spherical
Harmonics in complex space and tried to take the square root of
−4 and got −4.8017607

• You reply that the routine was thoroughly tested and is
performing as designed, so what gives

• Pandemonium ensues

25 Defects. HPC Software

But there’s trouble brewing in science

• Some indeterminate time later—after you’ve moved onto much
more exciting things—you start getting complaints or bug reports

• John has spent 2 weeks tracking spurious results down to your
routine that returned a value of 200.514691 (ε > 10−6) for
40200.25

• Tara also has a problem with you because she is doing Spherical
Harmonics in complex space and tried to take the square root of
−4 and got −4.8017607

• You reply that the routine was thoroughly tested and is
performing as designed, so what gives

• Pandemonium ensues

25 Defects. HPC Software

But there’s trouble brewing in science

• Some indeterminate time later—after you’ve moved onto much
more exciting things—you start getting complaints or bug reports

• John has spent 2 weeks tracking spurious results down to your
routine that returned a value of 200.514691 (ε > 10−6) for
40200.25

• Tara also has a problem with you because she is doing Spherical
Harmonics in complex space and tried to take the square root of
−4 and got −4.8017607

• You reply that the routine was thoroughly tested and is
performing as designed, so what gives

• Pandemonium ensues
25 Defects. HPC Software

This is a defect resulting from ambigous
requirements

• Nothing is more common in scientific
programming

• How could DBC have helped?

• Lets look at how adding DBC may
have aided things

• First, we decide we will not handle
complex math

• Second, we check for a tolerance at
the end

double my_sqrt(double S)

{

Require(S > 0.0);

double xn = 1.0;

for (int n = 0; n < 10; ++n)

{

xn = 0.5 * (xn + S / xn);

}

Ensure(std::fabs(xn*xn - S) > 1.0e-6 * S)

return xn;

}

26 Defects. HPC Software

This is a defect resulting from ambigous
requirements

• Nothing is more common in scientific
programming

• How could DBC have helped?

• Lets look at how adding DBC may
have aided things

• First, we decide we will not handle
complex math

• Second, we check for a tolerance at
the end

double my_sqrt(double S)

{

Require(S > 0.0);

double xn = 1.0;

for (int n = 0; n < 10; ++n)

{

xn = 0.5 * (xn + S / xn);

}

Ensure(std::fabs(xn*xn - S) > 1.0e-6 * S)

return xn;

}

26 Defects. HPC Software

Moral of the story

• This still won’t win any programmer-of-the-year awards, but you
get the point

• Adding DBC “contracts” allows both developers and clients to
codify potentially ambiguous requirements

• In particular, at review time DBC can help a reviewer determine if
the requested service is doing what is required

• Downstream, if the function is used in manner that is outside of
design parameters, at least we know

27 Defects. HPC Software

Real DBC Example—distance_to_boundary

__device__

void RTK_Cell::distance_to_boundary(

const Space_Vector &r,

const Space_Vector &omega,

Geo_State_t &state) const

{

DEVICE_REQUIRE(soft_equiv(vector_magnitude(omega), 1., 1.e-6));

DEVICE_REQUIRE(omega[X]<0.0 ?

r[X] >= d_extent[X][LO] :

r[X] <= d_extent[X][HI]);

DEVICE_REQUIRE(omega[Y]<0.0 ?

r[Y] >= d_extent[Y][LO] :

r[Y] <= d_extent[Y][HI]);

DEVICE_REQUIRE(omega[Z]<0.0 ?

r[Z] >= 0.0 :

r[Z] <= d_z);

// ...

DEVICE_CHECK(db >= 0.0);

// ...

DEVICE_ENSURE(state.dist_to_next_region >= 0.0);

DEVICE_ENSURE(state.exiting_face == Geo_State_t::INTERNAL ?

state.next_region >= 0 : true);

DEVICE_ENSURE(state.next_segment >= 0 && state.next_segment < d_segments);

• Valid argument types are
checked by the compiler

• DEVICE_REQUIRE checks that
input arguments are and
object is in a valid state

• DEVICE_CHECK in-function
checks

• DEVICE_ENSURE object and
arguments are in a valid state
at output

28 Defects. HPC Software

Software Verification Advantages

The purpose of unit-testing is to provide software verification as
close to code construction time as possible.

• finds code defects at construction time
• provides an automated, explicit review of the code and enables

Continuous Integration
I a mechanism for review is to have one developer write the test and the

primary developer writes the code
I when the test passes, the software component is automatically reviewed
I provides a testing basis for Continuous Integration

29 Defects. HPC Software

Software Verification Advantages

• makes porting to new platforms easier
• easier to find esoteric compile/link-time errors
• DBC can be used to verify interfaces to client code
• DBC incurs no cost in production code
• easier to run profiling, memory, and development tools on unit

tests than on a full executable
• unambiguous statement of code design requirements

30 Defects. HPC Software

Software Verification Advantages

• provides a sanity check on code refactors
• incorporating timing data allows a time-history profile of code

performance to be compiled:
I run automated unit-tests nightly
I as new code is developed compare timing histories to catch inefficient or

costly implementations
• provides simplified “usage” documentation for a piece of code

I in our example, a new developer could easily learn the mechanics of the
RTK_Geometry component by studying the unit tests

31 Defects. HPC Software

Disadvantages and Costs

• The most significant disadvantage is the perceived cost associated with unit
tests

• Our experience shows a cost of between 4-8 to 1 in writing code with unit tests
• This cost is minimal compared to the debugging cost incurred throughout a

product lifecycle
• In other words, the disadvantages are few unless you have developers who

unfailingly write “Bug-Free Code”
• Codes that are not structured according to acyclic design concepts may have

prohibitive unit-test costs
• Finding and abiding the 80/20 rule takes developer experience

32 Defects. HPC Software

Yes, we actually do this
to

ta
l C

++

comment
code

test code

DBC

LOC=686860

Py
th

on

comment
code

test code

LOC=58545

CU
DA

comment

code

test code

DBC

LOC=25460

33 Defects. HPC Software

Final Thoughts

• Review one takeaway: The cost of defect resolution increases
with time from defect introduction

• Use this as a guiding principle to improve productivity and tailor it
to fit your needs—you don’t need to do what we or others do!

• Applying this principle will sometimes add up-front costs, but it
has the advantage of catching defects when they are introduced;
this will result in significant savings downstream

34 Defects. HPC Software

Acknowledgments
• This manuscript has been authored by UT-Battelle, LLC, under Contract

No. DE-AC0500OR22725 with the U.S. Department of Energy.

• This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy
organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced
system engineering, and early testbed platforms, in support of the nations
exascale computing imperative.

• This research used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

35 Defects. HPC Software

	Research and Software Development
	The Complete Development Lifecycle
	Unit Testing
	Design-by-Contractmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfgTM
	Summary

