
IDEAS PRODUCTIVITY
BEST PRACTICES FOR HPC SOFTWARE DEVELOPERS

EVALUATING PERFORMANCE PORTABILITY OF
HPC APPLICATIONS AND BENCHMARKS

ACROSS DIVERSE HPC ARCHITECTURES

JAEHYUK KWACK, COLLEEN BERTONI, YASAMAN GHADAR, THOMAS APPLENCOURT, HUIHUO ZHENG, JOHN TRAMM,
BRIAN HOMERDING, ESTEBAN RANGEL, CHRISTOPHER KNIGHT, SCOTT PARKER

ALCF/CPS, Argonne National Laboratory

April 13th, 2022

OVERVIEW

§ HPC Architecture over time

§ Performance study: Intel/ARM CPUs and NVIDIA GPU in 2018

§ Performance Portability study: AMD, Intel and NVIDIA GPUs in 2021

2

HPC ARCHITECTURE OVER TIME

3

Pre-ExaScale era (2018)

Peta-Scale era (2015) Almost ExaScale era (2021)

ExaScale era (soon)

!

15%
from
GPUs

18%
from
GPUs

38%
from
GPUs

Reference: https://www.top500.org

https://www.top500.org/

4
Reference: https://science.osti.gov/-/media/bes/besac/pdf/201907/1330_Diachin_ECP_Overview_BESAC_201907.pdf

HPE/Intel
HPE/AMD

HPE/AMD

Intel/HPE

HPE/AMD/NVIDIA

More GPU-
accelerated
systems

https://science.osti.gov/-/media/bes/besac/pdf/201907/1330_Diachin_ECP_Overview_BESAC_201907.pdf

WHAT WE ARE LOOKING FOR…

§ Most application developers would like to have one programming model
– that would run everywhere (i.e., portability)
– and give decent performance (i.e., performance portability)
– ,so they can produce more scientific/engineering outputs. (i.e., productivity)

§ Unfortunately, I don’t think we have that.

§ This talk is about our effort to explore the past and current state of things in terms of
– basic portability for programming models,
– how to evaluate performance,
– and how to approach understanding performance portability

5

PERFORMANCE STUDY IN 2018
(INTEL/ARM CPUS AND NVIDIA GPUS)

JaeHyuk Kwack, Thomas Applencourt, Colleen Bertoni, Yasaman Ghadar,
Huihuo Zheng, Christopher Knight, and Scott Parker

7

§ Intel KNL 7320 processor

§ 16 GB MCDRAM memory w/
192 GB DDR memory

§ 32 tiles w/ 2 cores/tile

§ AVX-512 instructions
§ 1.3 GHz reference frequency

§ Intel Xeon 8180M processor

§ 395 GB DDR memory/node
§ 28 core x86 processor (14

nm+)

§ 2 AVX-512 FMA units/core
§ 2.5 GHz reference frequency

§ NVIDIA V100 SXM2 GPU

§ 32 GB HBM memory
§ 80 SMs with 32 FP64 CUDA

cores/SM and 8 Tensor cores/SM

§ 1.53 GHz maximum frequency

EMPLOYED ARCHITECTURES IN 2018

Intel Xeon Skylake processor NVIDIA V100 GPUIntel Xeon Phi KNL processor

§ Arm Marvell ThunderX2
CN9975 processor

§ 217 GB DDR memory/node

§ 28 core Arm v8.1 processor (16
nm+)

§ 2 NEON 128-vectors
engines/core

§ 2.2 GHz reference frequency
(2.5 GHz on Turbo mode)

ARM Thunder X2 processor

8

§ HPGMG-FV
– Solving an elliptic problem on

isotropic Cartesian grids with
4th order accuracy

– Employing the Full Multi-grid
(FMG) F-cycle

– A series of progressively deeper
geometric multi-grid V-cycles

– MPI+OpenMP for CPU
– MPI+CUDA for GPU

§ Nekbone
– A mini-app derived from the

Nek5000 CFD code (a high
order, incompressible Navier-
Stokes CFD solver based on
the spectral element method)

– Standard Poisson equation in a
3D box domain with a block
spatial domain decomposition
among MPI ranks.

– MPI+OpenMP for CPU

§ GAMESS
– A general quantum chemistry

and ab initio electronic structure
code (e.g., ab initio SCF
energies, force fields,
perturbative corrections to
Hartree-Fock, near-linear
scaling fragmentation methods,
and so on)

– Mainly written in Fortran
• A MPI parallelization library

(DDI library) written in C
• MPI + OpenMP for CPU
• MPI + CUDA for GPU

ECP BENCHMARKS AND APPLICATIONS

9

§ LAMMPS
– A molecular simulation code

commonly used for modeling
various states of matter (liquids,
surfaces, solids, biopolymers)
and supports multiple physical
models, particle types, and
sampling methods

– MPI + OpenMP for CPU
– MPI + Kokkos for GPU

§ QMCPACK
– An ECP application for ab-initio

electronic structure calculations
– Each OpenMP thread executes

an independent Markov chains
or walkers. After each walker
has completed a number steps,
the simulation is completed.

– Version: QMCPACK v3.7.0 with
SoA (i.e., Structure-of-Array)

– Input (a.k.a. S32)
• 32 repeats of a NiO primitive

cell leading to 128 atoms and
1536 electrons

§ QBOX
– A C++ MPI/OpenMP scalable

parallel implementation of first-
principles molecular dynamics
based on the plane-wave,
pseudopotential density
functional theory formalism

– Using FFTW for 3D Fast Fourier
Transformation and
ScaLAPACK for parallel dense
linear algebra.

– Linking against the vendor
provided libraries for FFT and
ScaLAPACK

– MKL on SKX and KNL
– ArmPL on TX2

ECP BENCHMARKS AND APPLICATIONS

10

§ Source
– MPI+OpenMP version (commit: a0a5510)

MPI+CUDA version (commit: 5ad473d)

§ Runtime configurations

HPGMG-FV

Higher is better

§ Figure of merit (FOM): how many walkers have been
moved in one second.

§ Different impacts of SoA optimization on SKX and TX2

§ SoA (Structure-of-Array) vs. AoS (Array-of-Structure)
– The performance gain by SoA depends on the data

cache performance.
– The speedup by SoA is much higher on SKX than on

TX2, because the data cache performance of SKX is
much better than the cache performance of TX2.

QMCPACK

3.3x

Lower is better

Higher is better

1.4x

11

Per-node performance

Higher is better

§ TDP (Thermal Design Power)
– KNL: 215W/socket,

215W/node
– SKX: 205W/socket,

410W/node
– TX2: 170W/socket,

340W/node
– V100: 250W/socket

Per-watt performance

Higher is better

ROOFLINE EFFICIENCY

§ FRk : measured flop-rates of a kernel

§ Pk (the maximum attainable performance for the kernel)

= min!peak memory BW ∗ arithmetic intensity
peak 3lop−rate

§ Roofline efficiency Ek = FRk / Pk
– equivalent to bandwidth efficiency for memory bound

kernel
– equivalent to flop-rate efficiency for compute bound

kernel

Evaluating roofline efficiency using profiling tools

12

F
lo

p
-r

at
es

Arithmetic intensity (flop/byte)

P
ea

k
m

em
ory

 B
W

 (G
B
/s

)

Peak flop-rate (GF/s)

FRk

Pk
FRk

Pk

Memory bound Compute bound

For more details, please check the following IDEAS HPC-BP webinars
• Using the Roofline Model and Intel Advisor (8/16/2017)
• Quantitatively Assessing Performance Portability with Roofline (1/23/2019)

https://www.exascaleproject.org/event/using-the-roofline-model
https://www.exascaleproject.org/event/perfport

13

MEASURED PEAK PERFORMANCE

Flop-rate

(TF/s)

L1

(TB/s)

L2

(TB/s)

LLC

(GB/s)

DRAM

(GB/s)

KNL 2.13 6.46 1.911 373 78.5

Dual SKX 3.55 15.91 4.55 209

Dual TX2 0.953 3.37 2.63 1091 224

V100 7.83 14.336 3.35 779

§ Measured via Empirical Roofline Tool
– TX2 peak flop-rate from DGEMM
– V100 L1 is the theoretical peak.

Arithmetic Intensity (FLOP/Byte)

14

ROOFLINE-BASED PERFORMANCE EFFICIENCY

Higher is better

Intel Xeon Skylake processorIntel Xeon Phi KNL processor ARM Thunder X2 processor

Relative Roofline-based
Performance Efficiency

SUMMARY
§ Executed performance tests

– for 2 HPC benchmarks (i.e., HPGMG-FV, and NEKBONE)
and 4 HPC applications (i.e., GAMESS, LAMMPS, QMCPACK, and Qbox)

– on four types of processor architectures (i.e., KNL, SKX, TX2 and V100)

15

Per-node performance Per-watt performance Roofline-based Efficiency

CHALLENGES WITH PORTABILITY IN 2018

§ Multiple CPU vendors (e.g., AMD, ARM, IBM, Intel, and so on)
– C, C++, and Fortran with OpenMP were well supported by most of vendors including LLVM, and GNU
– Mostly portable across CPUs

§ Single GPGPU vendor (i.e., NVIDIA)
– CUDA for the best performance from NVIDIA without portability
– OpenACC for portability between CPUs and GPUs from a limited number of vendors (e.g., PGI, Cray, GNU)

§ Portability layers from HPC community
– Kokkos and RAJA with OpenMP and CUDA backends

§ Many application developers considered CPUs as their primary architecture, while several developers
managed additional branch for GPGPU.

Limited demand on portability

16

CHANGES AND IMPROVEMENTS IN 2021

§ Multiple CPU vendors (e.g., AMD, ARM, IBM, Intel, and so on)
– C, C++, and Fortran with OpenMP have been well supported by most of vendors including LLVM, and GNU
– Mostly portable across CPUs

§ Single Multiple GPGPU vendors (e.g., NVIDIA, AMD, and Intel)
– CUDA for the best performance from NVIDIA without portability
– OpenACC for portability between CPUs and GPUs from a limited number of vendors (e.g., NVIDIA, HPE, GNU)
– OpenMP Target Offloading support for GPUs by multiple vendors (e.g., AMD, GNU, HPE, IBM, Intel, LLVM, NVIDIA)
– SYCL and HIP for AMD/Intel/NVIDIA GPUs

§ Increased use of portability layers from HPC community
– Kokkos and RAJA with OpenMP, CUDA, HIP and SYCL backends for CPUs and AMD/Intel/NVIDIA GPUs

§ More application developers consider GPGPUs as their primary architecture for the best performance.
§ New challenge is to make their applications performance portable across multiple GPGPU architectures.

More demand on portability

17

PERFORMANCE PORTABILITY STUDY IN 2021
(AMD, INTEL AND NVIDIA GPUS)

JaeHyuk Kwack, John Tramm, Colleen Bertoni, Yasaman Ghadar,
Brian Homerding, Esteban Rangel, Christopher Knight, Scott Parker

WHY PERFORMANCE PORTABILITY ON GPUS?

§ Accelerator-based systems are one of the dominant designs in the exascale era
– New NVIDIA GPU systems (NERSC/Perlmutter, CINECA/Leonardo, Argonne/Polaris)
– New Intel GPU systems (Argonne/Aurora, LRZ/SuperMUC-NG phase II)
– New AMD GPU systems (Oak Ridge/Frontier, Lawrence-Livermore/El Capitan, CSC-IT/LUMI)

§ It is a great challenge for developers attempting to make their applications portable across those HPC
platforms

§ US DOE has supported 21 projects with more than three dozen applications for coming exascale
systems via Exascale Computing Project (ECP).

– What is the best way to assess the application performance across the systems?
§ In this study, we investigate performance portability of a subset of ECP applications and related mini-

apps across AMD, Intel and NVIDIA GPUs.

19

Remark: Intel Xe brand high performance discrete GPUs are not publicly available at the time of this study. The integrated Gen9
GPU is therefore the most suitable Intel GPU for evaluation of HPC applications currently available.

20

§ 32 GB HBM2 memory
§ 120 compute units with 7,680

stream processors

§ Up to 11.5 TF/s with FP64

§ 64 GB DDR4 memory with 128
MB eDRAM memory

§ 9 subslices with 72 execution
units (EUs)

§ Up to 331 GF/s with FP64

§ 40 GB HBM2 memory
§ 108 SMs with 6912 CUDA cores

and 432 Tensor cores

§ Up to 9.7 TF/s with FP64

EMPLOYED GPU SYSTEMS

Intel Gen9 GPU (credit: Intel)
NVIDIA A100 GPU (credit: NVIDIA)

AMD MI100 GPU (credit: AMD)

21

§ AMR-Wind
– ECP ExaWind project for wind

farm simulations
– A structured-grid CFD

background solver
– AMReX framework serves as a

portability layer
– Tested atmospheric boundary

layer (ABL) flows in a cubic box

§ HACC CRK-SPH
– ECP ExaSky project for

cosmological simulations
– CRK-SPH to resolve gas

dynamics
– CUDA codes are migrated to

DPC++/SYCL programming
model by Intel DPCT

– Tested 8 rank N-body
simulation

§ SW4
– ECP EQSim project for

regional-scale ground motion
simulations

– SW4 is for seismic wave
propagation

– RAJA portability layer is used
with CUDA, HIP and SYCL
execution policies

– Tested a topology near
Berkeley, CA

ECP APPLICATIONS

Image sources
AMR-Wind: https://www.nrel.gov/wind/assets/pdfs/future-of-hpc-webinar-2020-07-30.pdf
HACC: https://www.sciencedirect.com/science/article/pii/S0021999116306453
SW4: https://geodynamics.org/cig/software/sw4/

https://www.nrel.gov/wind/assets/pdfs/future-of-hpc-webinar-2020-07-30.pdf
https://www.sciencedirect.com/science/article/pii/S0021999116306453
https://geodynamics.org/cig/software/sw4/

22

§ RI-MP2 (GAMESS)
– ECP GAMESS project for

quantum chemistry methods
– RI-MP2 is a perturbative

correction to HF
– OpenMP target offloading is

used on GPUs
– Tested the energy reduction

kernel in this study

§ XSBench (OpenMC)
– ECP ExaSMR project for

modular nuclear reactor
simulations

– Represents the MC transport
method

– Ported to multiple prog. models
– Tested a code with OpenMP

target offloading in this study

§ TestSNAP (LAMMPS)
– ECP EXAALT project for

molecular dynamics simulations
– A mini-app for the SNAP

potential from LAMMPS
– Ported to multiple prog. models
– Tested Kokkos implementation

in this study

ECP MINI-APPS

Image sources
RI-MP2(GAMESS): https://github.com/jkwack/GAMESS_RI-MP2_MiniApp
XSBench(OpenMC): https://www.sciencedirect.com/science/article/pii/S030645491400379X
TestSNAP(LAMMPS): https://www.osti.gov/servlets/purl/1645897

https://github.com/jkwack/GAMESS_RI-MP2_MiniApp
https://www.sciencedirect.com/science/article/pii/S030645491400379X
https://www.osti.gov/servlets/purl/1645897

PORTABILITY
Green lights for portability across AMD, Intel and NVIDIA GPUs

23

§ All of the applications, mini-apps, and their associated kernels have been demonstrated to run across
NVIDIA, AMD, and Intel GPUs.

§ All of the portability approaches employed (SYCL, OpenMP, Kokkos, RAJA, and AMReX) have therefore
been successful in enabling portability.

PERFORMANCE PORTABILITY

§ How to assess the performance portability of the applications
§ Pennycook’s performance portability metric (PPM)

– PPM is a harmonic mean of efficiency (Ek(i)).
• PPM is a good metric to represent overall efficiency across a set of platforms (H).

– Two types of efficiencies recommended
• Architectural efficiency: the achieved performance as a fraction of peak hardware performance
• Application efficiency: the achieved performance as a fraction of best observed performance based on the most

optimized implementation

Yes, portable. Performance portable?

24

EVALUATION OF PERFORMANCE PORTABILITY

§ Challenges in using architectural or application efficiency for PPM
– Peak flop-rates may be too restrictive to represent the peak hardware performance for architectural efficiency
– Requiring a determination of the relevant bottleneck on each hardware platforms for actual architectural efficiency
– Or, requiring development of a fully optimized kernel implementation for each hardware platform for application

efficiency

§ Roofline efficiency can be used as an approximation for architectural efficiency
– Considering kernels are highly performance portable if they fully utilize peak memory bandwidths or peak flop-rates

on a set of platforms of interest.
– Better than using peak flop-rates for architectural efficiency
– For kernels with low roofline efficiencies, further investigation for performance portability may be performed in

addition.
– Doesn’t require development of a fully optimized kernel implementation for each hardware platform

Performance portability metrics w/ roofline efficiency

25

MEASURED PEAKS FOR ROOFLINE ANLAYSIS

GPU FP64
(TF/s)

BW
(TB/s)

Balance
(F/B)

FP64
effi. (%)

BW
effi. (%)

AMD
MI100 10.9 0.895

(HBM2) 12.2 94.8 74.6

Intel
Gen9 0.280

0.0702
(eDRAM) 4.0

84.6
68.8

0.0276
(DRAM) 10.1 80.8

NVIDIA
A100 9.39 1.26

(HBM2) 7.5 98.8 81.0

Measured peaks and rooflines of the GPUs

26

Measured via Empirical Roofline Toolkit (ERT)
Compiler version:

• hipcc version 4.3.21300-5bbc51d8 for AMD
• dpcpp vesion 2021.4.0 for Intel
• nvcc version 11.3.109 for NVIDIA

27

Intel Advisor has supported GPU roofline analysis features; it uses a
binary instrumentation tool, GT-Pin for FLOP counts, and its
overhead is relatively higher than using hardware performance
counters.

PROFILING TOOLS FOR ROOFLINE ANALYSIS
Intel Advisor, NVIDIA Nsight, ROCm Profiler

NVIDIA Nsight Compute provides roofline analysis features; it
supports CUDA and OpenMP target offloading models; however,
OpenCL is not supported by NVIDIA tools, while OpenCL
applications are portable on NVIDIA GPUs. We hope NVIDIA tools
will support OpenCL programming model soon.

AMD ROCm profiler is used to collect performance data from
hardware counters and derived metrics. Since MI100 has no
dedicated FLOP counters, we assumed that FLOP counts on MI100
are similar to FLOP counts on A100. We hope the next generation of
AMD GPUs and SDK will provide a reliable method for FLOP
measurements.

Intel Advisor

AMD ROCm profiler

NVIDIA Nsight

AMR-WIND

§ AMR-Wind roofline-based performance data

An example of processing roofline performance analysis data

28

ROOFLINE PLOTS
Measured on Intel, NVIDIA GPUs, and Estimated on AMD GPU

29

Intel Gen9 GPU NVIDIA A100 GPU AMD MI100 GPU (estimated)

ROOFLINE EFFICIENCY

30

§ Roofline efficiencies on AMD, Intel
and NVIDIA GPUs are computed for
kernels of interest

§ Average efficiency on GPUs
– Intel Gen9: 56%
– NVIDIA A100: 40%
– AMD MI100: 41%
– We think it is due to the smaller size of

Intel GPU used in this study

PERFORMANCE
PORTABILITY

31

§ Performance Portability Metric (PPM)
– A harmonic mean of roofline efficiencies

across AMD, Intel, and NVIDIA GPUs
– A good metric to represent overall

efficiency across the GPUs

§ Observation
– PPM helps us understand performance

portability
• HACC (Geometry)

– PPM = 68.3% (higher is better)
• RI-MP2

– PPM = 9.64%

CLUSTERS OF KERNELS BASED ON PPM
§ A cluster with high PPM scores

– Mostly performance portable kernels

§ Middle PPM cluster
– Somewhat performance portable kernels, and possibly benefit

from further investigation

§ A cluster with low PPM scores
– Less performance portable based on roofline performance

analysis
– For this group, more investigation needed to identify critical

bottlenecks of kernels
– Need to consider some other factors not captured by roofline

analysis
• Memory latency, cache performance, atomic operation

performance, instruction throughput, pipeline designs of
processing units, NUMA effect, and so on

32

Cluster Kernel PPM(%)

High
PPM

HACC Geometry 68.3

HACC DuDt 63.0

HACC BarExtras 62.1

HACC Corrections 60.9

AMR-Wind MLABec 60.6

Middle
PPM

SW4 curvilinear4sg 53.0

AMR-Wind MLNode 35.3

XSBench 33.2

TestSNAP FusedDeiDrj 20.9

AMR-Wind MLPoisson 18.2

Low
PPM

RI-MP2 9.64

TestSNAP(Yi) 9.15

TestSNAP(Ui) 6.06

PERFORMANCE
VARIATION

33

§ Observation about variation
– PPM vs. Consistency

• AMR-Wind (MLNode)
– PPM = 35.3%

• XSBench
– PPM = 37.7%

• Can we say both kernels are
similarly performance portable?

• Additional metrics are helpful to
understand consistency in
addition to the performance
portability metric

PERFORMANCE
CONSISTENCY

METRIC

34

§ Additional metrics for performance
consistency in this study

– Std.Dev/Avg
– Min/Max

§ Observation about variation
– PPM vs. Consistency

• AMR-Wind (MLNode)
– PPM = 35.3%
– Std.Dev/Avg = 5.7%

(lower is better)
– Min/Max = 90.4%

(higher is better)
• XSBench

– PPM = 37.7%
– Std.Dev/Avg = 50.8%
– Min/Max = 37.7%

PRODUCTIVITY
Portability layers increase productivity with some limitations

35

§ The portability layers work as an aid to the productivity of the application developers since they reduce
or eliminate the need for multiple code branches for different platforms.

§ Several challenges
– Architectural differences may results in multiple branches of codes for performance

• Kokkos is portable across CPU and GPU, but TestSNAP has independent code branches for CPU and GPU for
performance

• The GPU branch increases the number of FLOPs with avoiding global memory read-writes ultimately ended up
being a net benefit on GPU platforms.

– Partial implementation of programming model specifications across different platforms
• OpenMP target offloading, SYCL or other open standard specifications have partial implementations per platform

at the moment.
• Developers need to use common subset for their target platforms, till full specification are fully supported across

platforms
– Further performance optimization

• It will be challenging to improve the performance on a specific platform w/o making an additional code branch
• Need patience to use different performance tools interface

LESSON LEARNED
§ Thanks to well developed portability layers (i.e., SYCL, OpenMP, RAJA, Kokkos, AMReX), all of the

applications and mini-apps evaluated in this study were able to portably run across AMD, Intel, and
NVIDIA GPU platforms with minimal to no changes in their code base.

§ Getting performance data across multiple platforms is difficult, so this is a challenge to performing
performance portability analysis.

§ Estimating performance efficiencies is challenging, but using roofline efficiency can be a good
approximation; however, kernels with low roofline efficiencies need further performance investigation.

§ Additional metrics for performance consistency can be beneficial to understand performance variability
across platforms.

§ Observations on productivity pitfalls such as:
– the need for code branching for CPU and GPU,
– partially implemented specifications on some platforms.

36

ACKNOWLEDGEMENT
§ This work was supported by

– the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357,

– and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of
Energy organizations (Office of Science and the National Nuclear Security Administration).

§ We also gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for
System Evaluation (JLSE) at Argonne National Laboratory.

§ We would like to thank our collaborators:
– Programming Models and Architectures (PMA) working group at Argonne National Laboratory: Abhishek

Bagusetty, Kevin Harms, Ye Luo, Vitali Morozov, Kris Rowe, and Brice Videau
– Sam Williams (LBNL), Zakhar Matveev(Intel) and their teams for roofline model discussion
– Jon Rood (NREL), Paul Mullowney (NREL), and Weiqun Zhang (LBNL) for technical supports for AMR-

Wind and AMReX
– Rahul Gayatri (LBNL) and Daniel Arndt (ORNL) for discussing about TestSNAP
– Christian Trott (SNL) and David Poliakoff (SNL) for discussing other performance bottlenecks on GPUs

37

THANKS!

