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My open source, scientific software experience:

● Started the deal.II project in 1997:
– now 1.5M lines of C++
– library that provides general finite element support
– currently 11 “principal developers”
– ~300 contributors over the years
– 200+ papers/year that use it

● Started the ASPECT project in 2011:
– now 150,000 lines of C++
– simulates convection in the Earth mantle,
   deformation of the lithosphere
– currently 9 “principal developers”
– ~100 contributors over the years

Where I’m coming from
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Building
– long-term sustainable software
– successful software communities
comes down to this:

It’s not about being a “good programmer”.
It’s really all about (limitations of) people.

Specifically, dealing with human limitations to:
1) learn and work with complex systems
2) work with people in complex organizations

What I learned



w
w
w
.d
e
a
lii
.o
rg

4/21

(Humans dealing with) Technical complexity
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There is a fundamental difference between
– where projects start, and
– where projects end up.

Using deal.II as an example. In the beginning:
● Started 1997 by myself: a single grad student
● Wrote 20k lines of code in year 1
● Acquired 2 co-authors in the same lab
● After 2 years:

– 3 people
– 100k lines of code
– no external dependencies
– no external users

● Website “because we can” in 2000

● This is probably quite typical of many scientific codes in 
academia and the national labs

Managing technical complexity
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There is a fundamental difference between
– where projects start, and
– where projects end up.

Using deal.II as an example. Now:
● 1.5M lines of code, grows by 40k lines/year
● 11 principal developers
● 300 contributing authors
● 1200 people on the mailing list

● Used in many individual research projects

● Uses many other packages

Managing technical complexity
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What this means:
● Scientific software today is no longer a “collection of sub-

routines” (like BLAS or LAPACK originally were)

● Packages form an “interconnected web” where each builds 
on others

● Many packages are themselves composed of “modules”:
– deal.II itself
– Trilinos
– PETSc

Managing technical complexity
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Why are things this way?
● Because no single developer can know this much

● Because no single user can learn this much

Managing technical complexity
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There are costs associated with this:
● Installation complexity

● Different styles of coding, documenting, teaching

● Each dependency is in itself a moving target

● Which developer knows which dependency, and how do we 
make sure that knowledge is preserved?
(→ what is the project’s “bus factor”?)

Managing technical complexity



w
w
w
.d
e
a
lii
.o
rg

11/21

There are costs associated with this:
● Installation complexity

● Different styles of coding, documenting, teaching

● Each dependency is in itself a moving target

● Which developer knows which dependency, and how do we 
make sure that knowledge is preserved?
(→ what is the project’s “bus factor”?)

From Wikipedia: The “bus factor” is the minimum number of team members that have to 
suddenly disappear from a project before the project stalls due to lack of knowledgeable or 
competent personnel.

Studies conducted in 2015 and 2016 calculated the bus/truck factor of 133 popular GitHub 
projects. The results show that most of the systems have a small bus factor (65% have bus 
factor ≤ 2) and the value is greater than 10 for less than 10% of the systems.

Managing technical complexity
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How do we deal with this:
● Poorly

● We talk about “software design”, which is as much art and 
craft as it is science – because we don’t really understand it

Managing technical complexity
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How do we deal with this:
● Poorly

● We talk about “software design”, which is as much art and 
craft as it is science – because we don’t really understand it

● We learn about human limitations – specifically that human 
time is much more valuable than computer time:

"We should forget about small efficiencies, say about 97% of the time: 
premature optimization is the root of all evil."

(Donald Knuth).

"Any fool can write code that a computer can understand. Good 
programmers write code that humans can understand." 

(Martin Fowler)

Managing technical complexity
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But, we also have good technical solutions for human 
limitations:

– We forget → we use autocomplete
– We make mistakes → we write test suites
  → we peer review codes
– We break code → we use continuous integration
– It’s repetitive/boring → we use package managers
– Can’t keep things in sync → we use in-code documentation

Examples of tools:
– autocomplete: Eclipse, Visual Studio, Qt Creator
– tests: ctest, google test, …
– code review: github
– continuous integr.: jenkins, github actions
– package managers: cmake, spack, linux repositories
– documentation: doxygen

Managing technical complexity
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There are also many collections of best practices:

– How to write documentation
– How to write teaching materials
– How to onboard new people
– Coding styles, software patterns, naming conventions, …

Examples:
– Code Complete (Steve McConnell)
– Design Patterns (Gamma et al., also several others)
– Producing Open Source Software (Karl Fogel)

– Look at how other projects write documentation, tutorials,
   manuals
– Check out BSSw

Managing technical complexity
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Summary:

● Building workable scientific software packages has really 
become about managing complexity and human limitations 
around complex systems

● A large amount of time and thought goes into:
– breaking things into manageable chunks
– writing documentation
– writing teaching materials
– building infrastructure

● The difficulty is not with the technical tools, but with the 
human ability to learn/understand/manage complex systems

Managing technical complexity
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(Humans dealing with) Human complexity
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Scientific software has some unique aspects:

● Often part of research projects – there are no standard 
solutions one can look up

● Often built by temporary employees:
– graduate students
– postdocs

● Often built by unpaid volunteers

● Generally built by people without formal C.S. education

This brings some interesting human challenges with it!

Managing people
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Regarding temporary employees:

● A lot of responsibility on a few senior leaders:
– constant onboarding of new contributors
– a lot of teaching/mentoring
– importance of code review

● Contributing authors do not feel the same level of 
“ownership”, have other priorities

● Leadership needs to make up for lack of experience/quality

Managing people
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Regarding volunteers (1):

● Development directions are sometimes unclear: 
Functionality grows by what user-developers need, not what 
the project wants
→ It’s difficult to establish “road maps”

● Volunteers can’t be treated like employees

Managing people
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Regarding volunteers (2):

● A lot of responsibility on a few senior leaders:
– constant onboarding of new contributors
– a lot of teaching/mentoring
– importance of code review

● Leadership needs to provide key infrastructure 
improvements

● Leadership needs to work on growing the pool of volunteers

Managing people
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Regarding the “principal developers”? (1)

● Have to fill many roles:
– manage technical infrastructure
– maintain “institutional knowledge”
– onboard and mentor contributors
– review patches

– work on foundational functionality

Managing people
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Regarding the “principal developers”? (2)

● Manage their own careers with all of the other demands:
– as faculty
– as permanent technical staff

● Obtain funding for their work
● Document the work that is being done

Problem: There are a lot of other demands on principal 
developers’ time.

But: This is also an awesome job if you enjoy working with 
people!

Managing people
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Some recommendations
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Technical aspects:
● Use the tools that are out there:

– Eclipse/Visual Studio instead of emacs/vi
– cmake instead of homegrown installation scripts
– doxygen
– github

● Teach the use of these tools

● Read up on best practices (e.g. “Code Complete”, books on 
software design patterns)

● Teach these best practices

Recommendations
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Human aspects:
● Commit to a project only if that is compatible with career 

aspirations

● If you lead a project:
– Understand where people are coming from
– Spend the time mentoring
– Be welcoming and generous with praise

Recommendations
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Scientific software packages have become so large that 
they are fundamentally different from small academic 
codes:

● Managing the limits of humans to understand complexity 
is the key technical challenge

● Managing the humans in these projects
– with different skills
– with different motivations
is the key human challenge.

Conclusions
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More information:      

● Wolfgang Bangerth:
“Leading a Scientific Software Project: It's All Personal”

Better scientific software (BSSw) blog post, 2019

https://bssw.io/blog_posts/leading-a-scientific-software-project-it-s-all-personal 

● Wolfgang Bangerth and Timo Heister:
“What makes computational open source software libraries 
successful?”

Computational Science & Discovery 6 (2013), 015010

doi:10.1088/1749-4699/6/1/015010

https://bssw.io/blog_posts/leading-a-scientific-software-project-it-s-all-personal
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