© ENERGY
H BERKELEY LAB Office of Science

Bringing Science Solutions to the World

Please, No More Loops (Than Necessary):

New Patterns in Fortran 2023

rrrrrr

Damian Rouson
Computer Languages and Systems Software (CLaSS) Group
https://go.lbl.gov/fortran

HPC Best Practices Webinar, 21 January 2026

Acknowledgements

The Berkeley Lab Fortran Team

Dan Bonachea, Brandon Cook, Paul Hargrove, Hugh Kadhem, Kate Rasmussen
Collaborators
Katherine Rasmussen, Dan Bonachea

Zhe Bai, Jeremiah Bailey, Baboucarr Dibba, Dan Bonachea, Ethan Gutmann, Brad Richardson, Sameer
Shende, David Torres, Katherine Rasmussen, Kareem Jabbar Weaver, Jordan Welsman, Yunhao Zhang

Dan Bonachea, Jose Castillo, Johnny Corbino, Joseph Hellmers

Dan Bonachea, Kareem Ergawy, Jeff Hammond, Michael Klemm, Jean-Didier Pailleux,
Etienne Renault, Katherine Rasmussen, Brad Richardson

Dan Bonachea, David Torres, Dominick Martinez

Sponsors

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, and Office of Nuclear Physics. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231. This research was supported
by the Lawrence Berkeley National Laboratory Laboratory Research and Development (LDRD) program.

Overview

01 02

Background: Features &

Deep origins Paradigms:

A walking tour
from Fortran 90
to 202Y

Please, No More Loops (Than Necessary)

03 04

Use Cases: Conclusions
Nooks,

Crannies, and

Pastures

rrrrrr

H BERKELEY LAB

Bringing Science Solutions to the World

Overview

01

Background:

Deep origins

rrrrrr

H BERKELEY LAB

Please, No More Loops (Than Necessary) Bringing Science Solutions to the World

U.S. DEPARTMENT OF

/\lﬂ BERKELEY LAB 'ENERGY

Bringing Science Solutions to the World Office of Science

1956

The Fortran Automatic Coding System for the IBM 704,
the first programmer’s reference manual for Fortran
(Public Domain)

Pioneers in Science and Technology Series: John Backus, 1984
© City of Oak Ridge, Oak Ridge, TN 3783 (Public Domain)

Please, No More Loops | Berkeley Lab

/_\lﬂ BERKELEY LAB

Bringing Science Solutions to the World

[0 v Fortran Manual (1956).pdf ® Q @ 4]
vy RO Inspector Zoom Share
Sort By: | Search Rank Page Order

Fortran Manual (1956).pdf

U.S. DEPARTMENT OF

ENERGY

G,

!

Office of Science

g v O ® Q-

Highlight Rotate Markup Form Filling Search

CHAPTER 1. GENERAL PROPERTIES

a
Fortran Program

“... the DO statement causes the
succeeding statements to be
carried out repeatedly...”

OF A FORTRAN SOURCE PROGRAM

A FORTRAN source program consists of a sequence of FORTRAN statements.
There are 32 different types of statement, which are described in detail in the
chapters which follow.

‘The following brief program will serve to illustrate the general appearance and
some of the properties of a FORTRAN program. It is shown as coded on a
standard FORTRAN coding sheet.

FORTRAN STATEMENT

‘This program examines the set of n numbers a; (i=1,
quantity BIGA to the largest value attained in the set. It beg
ment_describing the program) by setting BIGA equal fo
STatement Causes the SUCCOEQINg statements (o an
be carried out repeatedly, first with i=2, then with

During each repetition of this loop the IF statement comp

before continuing.

Each statement is punched on a scpefe card. If a statement is to0 long to
it on a single card it can be cgpefffied over as many as 9 additional continuation
cards. For each state
in column 6; o uation cards column 6 must not contain a zero or a blank,
used to number the continuation cards consecutively from 10 9.
a statement is t00 long to fit on a single line of the coding form, the
Programmer can signal to the keypuncher that he has continued on to the next
line by placing a mark in the column labeled CONTINUATION.

Overview

02

Features &
Paradigms:

A walking tour
from Fortran 90
to 202Y+

rrrrrr

H BERKELEY LAB

Please, No More Loops (Than Necessar
’ Ps (y) Bringing Science Solutions to the World

New Features Paradigms

Derived types
Structure constructors
Derived type input/output (I/O) Object_Based Prog ramming
Data and procedure privacy
Pointers (required for dynamically allocating object components)
and defined assignments

Recursive procedures Functional el 2] LI

Array programming

Modules :
Modular programming
Interface blocks & bodies, including generic interfaces

Structured branching and looping

Allocatable arrays }

Structured programming
Kind parameters and related intrinsic functions

Free-form source (.f90)

Please, No More Loops (Than Necessary) 8

New Features Paradigms

} Functional programming

} Array programming
where construct

forall construct (obsolescent) } Parallel/vector programming

Please, No More Loops (Than Necessary)

New Features Paradigms

A a8

90 95 i

Type extension, type-bound procedures, polymorphism, and final subroutines

Generic bindings, including type-bound operators and assignments

Type/source allocation & automatic (re-)allocation via intrinsic assignment L il caiamining (OO

Allocatable scalars and components

Generic programming

Array programming

Object-Oriented Design Patterns (OOD)
Functional programming

(C Interoperability)

e e e N e

iso c binding module

Iso fortran env module: input unit, error unit,..

Please, No More Loops (Than Necessary)

New Features Paradigms

2 2 X &

90 95 oo hon

Parallel/GPU programming:

e SPMD
critical blocks, locks e PGAS
Atomic subroutines and atomic kinds e Shared or distributed memory

Impure elemental procedures

Contiguous array dummy arguments Array programming

Mold allocation and automatic type (re-)allocation via intrinsic assignment

} Modular programming 4
Please, No More Loops (Than Necessary)

New Features Paradigms

X X g

2003 2008 2(31,1 3

Kind parameters: ¢ _int32 t,

Assumed-type (type (*)) and assumed-rank (a(. .))dummy arguments and rank guarding (select rank)

ISO Fortran binding.h:

(C-Interoperability)

Data structures: CFI cdesc t, CFI dim t, CFI rank t, CFI type t, CFI attribute t

Functions: CFI address(), CFI allocate(), CFI deallocate(), CFI establish(),
CFI is contiguous(), CFI section()

Parallel/vector programming

Teams

Failed images

Please, No More Loops (Than Necessary)

New Features Paradigms

enumeration types

maximum statement length: 1 million characters

Please, No More Loops (Than Necessary)

New Features Paradigm

90 00: 2008 2018

90 95 i

2023 202

l

; : } Generic programming
Generic subroutines

Enhanced collective subroutines: team collectives,
: Parallel i
asynchronous collectives el iRrogT g

Please, No More Loops (Than Necessary)

Nooks & Crannies

www.marthastewart.com/ @ +

a 22 Reading Nook Ideas for Turning Any Space Into a Cozy Escape

martha stewart Q

22 Reading Nook Ideas for Turning Any
Space Into a Cozy Escape

Get inspired to find the perfect place to forget about your cares and slip
away into a good book with these reading nook ideas.
o @ + By Heather Bien Published on July 3, 2024

www.merriam-webster.co =} www.merriam-webster.co @ +

() NOOK Definition & Meaning - Merriam-Webster () CRANNY Definition & Meaning - Merriam-Webster

Example Sentences Word History Phrg Definition Synonyms Example Sentences Word History Phra

» - h i

Nnook noun A LD E ‘ , craniny noun
(nuk=)) =L B cran'ny (kra-néw))
Synonyms of nook >

plural crannies
1 chiefly Scotland : a right-angled corner Synonyms of cranny >

2 a :aninterior angle formed by two meeting walls f 1 :asmall break or slit: CREVICE

b :asecluded or sheltered place or part . b K
. :an obscure nook or corner
searched every nook and cranny R E

: asmall often recessed section of a larger room

crannied (kra-néd«)) adjective
| a breakfast nook

e

Credit: Barr Joinery & Lucy Walters

Please, No More Loops (Than Necessary)

Fortran 2018 Intrinsic Functions

2018-08-28

able 16.
durc

ALLOCATED
T

ATOMIC_AND
ATOMIC_CAS

ATOMIC_DEFINE
ATOMIC_FETCH_ -

FETCH

CO_BROADCAS
CO_MAX
CO_MIN

CO_REDUCE

13/18-007¢1

2018-08-28

Procedure
3 FAN
HUGE
HYPOT
IACHAR

CPU_TIME
CSHIFT
DATE_AND_TIME

{
I PRODUCT

DPROD
DSHIFTL

DSHIFTR
EOSHIFT

EPSILON

¢

1S_CONTIGUOUS

IS_IOSTAT_END
2

TYPE -

OF
FAILED_IMAGES
FINDLOC

FLOOR 3
FRACTION LOG_GAMMA
GAMMA
GET_COMMAND LOG10
LOGICAL
GET_COMMAND MASKL
ARGUMENT MASKR
MATMUL
ENVIRON- MAX
VARIABLE MAXEXPONE
MAXLOC

J3/18-007r1

[INEXPONENT
MINLOC

MINVAL

MOD
I0DULO

MOVE_ALLOC

MVBITS

NUM_IMAGI
OUT_OF_RANG!
PACK

PARITY
POPCNT
POPPAR
PRECISION
PRESENT
PRODUCT

RAD
RANDOM_INIT
RANDOM_NUMBER
RANDOM_SEED
RANGE

RANK

REAL

REDUCE

2018-08-28 WD 1539-1

Procedure

REPEAT COPIES)

RESHAPE SOURCE. SHAPE [, PAD.
ORDER])

RRSPACING X

SAME_TYPE_AS
SCALE

SELECTED_REAL
D

EXPON

SHIFTA
SHIFTL
SHIFTR

ARRAY [, DIM, KINDJ)
SOURCE, DIM, NCOPIES

PED_IMAGES ([TEAM, KIND])
STORAGE_SIZE A [, KIND]
SUM X

AY |
SYSTEM CLOCK ([COUNT.
COUNT
TAN
TANH
TEAM_NUMBER
THIS IMAGE
THIS IMAGE COARRAY [, TEAM)) or
(COARRAY, DI

TINY
TRAILZ
TRANSFEF . MOLD [, SIZE])

(STRIN
ARRAY [, DIM, KIND])
(COARRAY [, DIM, KIND))
VECTOR, MASK, FIELD)
STRING, SET [, BACK.

IND])

The effect of ealling EXECUTE_COMMAND_LINE on any

proce

J3/18-007r1

13/18-007r1

string concatenation
Arbitrary shape array construction.

Reciprocal of relative spacing of model
numbers.

Dynamic type equality test

Real number sealed by radix power
Character set membership search,

Character kind selection
Integer kind selection.

Real kind selection,

Value replicated in & new dimension.
Square oot
s of stopped imag
size in bi

Array reduced by addition.
Query system clock

Tangent function.

Hyperbolic tangent function.
am mumber

Index of the invoking imay

Cosubscript(s) for this in

Smallest positive model number
Number of trailing zero bits.
Transfer physical representation.
Transpose of an array of rank two,
String without trailing blanks,
Upper bound(s)
Upper cobound(s

) of a coarray
Vector unpacked into an array
Character set non-membership search

other than image 1 in the initial team i

Fortran 2023 Multi-lmage Features

Statements Intrinsic subroutines
— Synchronization — Collective subroutines: CO_SUM, CO_MAX,
« Explicit: SYNC ALL, SYNC IMAGES, CO_MIN, CO_REDUCE, CO_BROADCAST
SYNC MEMORY, SYNC TEAM Atomic subroutines: ATOMIC_ADD,
- Implicit: ALLOCATE, DEALLOCATE ATOMIC_AND, ATOMIC_CAS, ATOMIC_DEFINE,
’ ’ ATOMIC_FETCH_ADD, ATOMIC_FETCH_AND
TOP, END, MOVE_ALL — AL, — —AND,
Event 'SESEI’\IT PO’STOEVENT V?/ZT ATOMIC_FETCH_OR, ATOMIC_FETCH_XOR,
vents. ’ ATOMIC_OR, ATOMIC_REF, ATOMIC_XOR
Notify: NOTIFY WAIT — Other subroutines: EVENT QUERY

Error termination: ERROR STOP Types, kind type parameters, and values
Locks: LOCK, UNLOCK — Intrinsic derived types: EVENT_TYPE,
Failed images: FAIL IMAGE TEAM_TYPE, LOCK_TYPE, NOTIFY_TYPE
Teams: FORM TEAM, CHANGE TEAM Atomic kind type parameters:

Critical sections: CRITICAL, END CRITICAL ATOMIC_INT_KIND and

ATOMIC_LOGICAL_KIND

Cogrrgy Acce.sses (L) Values: STAT_FAILED_IMAGE, STAT_LOCKED,
Intrinsic functions: NUM_IMAGES, THIS_IMAGE, STAT LOCKED_OTHER_IMAGE,

LCOBOUND, UCOBOUND, TEAM_NUMBER, STAT_STOPPED_IMAGE, STAT_UNLOCKED,
GET_TEAM, FAILED_IMAGES, STOPPED_IMAGES, STAT_UNLOCKED_FAILED_IMAGE
IMAGE_STATUS, COSHAPE, IMAGE_INDEX

Overview

01 03

Background: Use Cases:

Deep origins Nooks,
Crannies, and
Pastures

rrrrrr

H BERKELEY LAB

Please, No More Loops (Than Necessary) Bringing Science Solutions to the World

Correctness-Checking with Julienne

Unified Idioms for writing
— Unit tests
— Assertions

Support for Fortran 2023 parallelism
— Multi-image testing: a collective

reduction detects failure on a
subset of images

— Assertions are pure procedures
as required for invocation inside
a do concurrent construct.

Rouson, Bonachea, & Rasmussen, "ldiomatic Correctness-
Checking via Julienne in Fortran 2023", Proceedings of the
US Research Software Engineering Conference, October 2025.
DOI: 10.25344/S4BG65

Please, No More Loops (Than Necessary)

e < E] github.com/berkeleylab/julienne ¢ M o+

00 README &8 License 7

Contributors 4

“ rouson Damian Rouson

e ktras Katherine Rasmussen
& Copilot

* bonachea Dan Bonachea

Deployments 23

@ github-pages last week

+ 22 deployments

Julienne: Idiomatic Correctness Checking
for Fortran 2023

Languages

® Fortran997% ® C0.3%
The Julienne framework offers a unified approach to unit testing and runtime assertion

checking. Julienne defines idioms for specifying correctness conditions in a common
way when writing tests that wrap the tested procedures or assertions that
conditionally execute inside procedures to check correctness. Julienne's idioms
center around expressions built from defined operations: a uniquely flexible Fortran
capability allowing developers to define new operators in addition to overloading
Fortran's intrinsic operators. The following table provides examples of the expressions
Julienne supports:

Example expressions Operand types

X .approximates. y .within. tolerance real, double precision

https://go.lbl.gov/julienne

)

rreeer H

BERKELEY LAB

Bringing Science Solutions to the World

https://go.lbl.gov/julienne
https://doi.org/10.25344/S4BG65
https://doi.org/10.25344/S4BG65
https://doi.org/10.25344/S4BG65
https://us-rse.org/usrse25/
https://doi.org/10.25344/S4BG65

Julienne Idioms

» Scalar/array combinations

Please, No More Loops (Than Necessary)

Row | Example expressions Supported operand types of the bold operator
1 X .approximates. y .within. tolerance real, double precision
2 X .approximates. y .withinFraction. tolerance real, double precision
3 X .approximates. y .withinPercentage. tolerance real, double precision
4 .all. ([i,]J] .lessThan. k) test_diagnosis_t
5 .all. ([i,]J] .lessThan. [k,m]) test_diagnosis_t
6 .all. (i .lessThan. [k,m]) test_diagnosis_t
7 (i .lessThan. j) .also. (k .equalsExpected. m) test_diagnosis_t
8 X .lessThan. y integer, real, double precision
9 x .greaterThan. y integer, real, double precision
10 i .equalsExpected. j integer, character, type (c_ptr)
11 i .isAtLeast. J integer, real, double precision
12 i .isAtMost. j integer, real, double precision
13 s .isBefore. t character
14 s .isAfter. t character
15 (.expect. allocated(d)) // ' (expected an allocated array "A")’ logical
Elemental Operators: Any 1 elemental function defining a binary operator
) , accepts 46 combinations of operands:
— Defined as pure functions
Bi t) ; bl d j « 1 for scalar operands
Inary operators accept conformable operands: - 15 for array operands of rank 1-15
« Same-shaped arrays L .
+ 30 for scalar/array combinations in either order

)

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

Writing PDE Solvers with Formal

Fortran mimetic abstraction language
— Derived types that mimic tensor fields
— Differential and integral operators

— Supported by a discrete calculus based
on the mimetic discretizations of Corbino
& Castillo (2020).

Future work

— An embedded domain-specific language
(DSL) for tensor calculus

— Formal verification leveraging problem-
specific proof by testing

— Tensor contractions for machine learning

Corbino, J., & Castillo, J. E. (2020). “High-order mimetic finite-difference
operators satisfying the extended Gauss divergence theorem”.
Journal of Computational and Applied Mathematics, 364, 112326.

Please, No More Loops (Than Necessary)

e < github.com/BerkeleyLab/formal ®© h + O
() BerkeleyLabjformal: Fortran mimetic abstraction language
ADME &1t -)
(1] README License 7 Contributors 2

,,,,,,,,,,, o @ “ rouson Damian Rouson

T — Y 11

[T 2 W VAR (S & vonachea oan Bonachea

| NC <) | VYY N N s

AU 2 4 R [y OO Iy Gy

\/ VARV

Languages

Formal: Fortran mimetic abstraction language

Towards an embedded domain-specific language (DSL) for tensor calculus and formal
verification.

Introduction

Formal supports research on mimetic software abstractions for tensor calculus by providing
* Derived types that mimic tensor fields and
« Differential and integral operators for writing tensor expressions.

Formal's types and operators implement the discrete calculus of Castillo & Corbino (2020):

mimetic discretizations satisfying discrete versions of tensor calculus theorems.

Like the underlying numerical methods, Formal's software abstractios mimic their tensor
calculus counterparts. For example, given scalar and vector fields f and T defined over a unit
volume v = [0,1]* bounded by a surface area 4, the program example/extended-gauss-

ion of the extended Gauss divergence theorem:

ﬂ (v -vndwj] (V- E)dv:ﬂ_fﬁ dA
v v A

divergence.F9@

https://go.lbl.gov/formal

)

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

https://go.lbl.gov/formal

® ® @ LaTeXiT-1

///V(U-Vf)dV+///V(fv-ﬁ)dV+//Afz7-d/T

=~ \iiint_V (\vec{v} \cdot \nabla f) dV + \iiint_V (f \nabla \cdot \vec{v}) dV + \iint_A f \vec{v} \cdot d\vec{A}

Auto Align Display Inline Text

Fontsize: 36.00 pt Color: (NI LaTeX it!

o affl g - : '
formal — vim tmp.f90 — 64x10

run --example extended-gauss-divergence

- (x*%2)/2 ! <—— scalar function
= X ! <—— vector function
(v .dot. .grad. f) * dV = ©.33333333302059365
f % .div. v) * dV 0.16666666739857122
(v .dot. dA)) -0.50000000041916492

0.0000000000000000 (residual)
9,2 All

)

Please, No More Loops (Than Necessary) H BERKELEY LAB

Bringing Science Solutions to the World

“When writing type-safe templates in Fortran, you can consider

the requirements as defining a DSL for the template body. Such

DSLs are extremely cheap to define, just a collection of derived
declarations, and have no runtime overhead.”

Prof. Magne Haveraaen
Bergen Language Design Laboratory
University of Bergen

GO®DDARD REQUIREMENT Construct

EARTH SCIENCES.

REQUIREMENT binop(op, T, U, V) A requirement encapsulates a reusable relationship among
DEFERRED TYPE :: T, U, V deferred arguments.
DEFERRED INTERFACE
FUNCTION op(x,y) RESULT(z)
TYPE(T), INTENT(IN) :: X

TYPE(U), INTENT(IN) :: vy The REQUIRE statement enforces a REQUIREMENT
TYPE(V) :: z « Mismatch at template instantiation is compile-time error
END FUNCTION « Transitively declares its arguments
END INTERFACE . gsr?s?rﬂg?ar in template specification and requirement

END REQUIREMENT

TEMPLATE my_templ(T, U, plus, times)
USE requirements_mod, only: binop

REQUIRE binop(plus, T, U, U) ! Real+complex —> complex
REQUIRE binop(times, T, U, U) ! Realxcomplex —> complex

END TEMPLATE

Slide content courtesy of T. Clune, NASA Goddard Space 25

Deep Learning with Fiats

eoe0 < & github.com/BerkeleyLab/fiats/tree/main 4 O f + O
Packages
[0 README [License 7 =
. o No packages published
[N T A T -
| 0 R I VO N A V/ _/
| NN i
N T S 2 BV AR Contributors 11
\/ \/ \/ a e e . “
na e
Fiats: Functional inference and e
training for surrogates Deployments 177

@ github-pages last week
Alternatively, Fortran inference and training for science.

+ 176 deployments

Overview | Getting Started | Documentation

Overview anguages

® Fortran 98.9% Other 11%

Fiats supports research on the training and deployment of neural-net
surrogate models for computational science. Fiats also provides a plat
for exploring and advancing the native parallel programming features of
Fortran 2023 in the context of deep learning. The design of Fiats centers
around functional programming patterns that facilitate concurrency,
including loop-level parallelism via the do concurrent construct and

Single-Program, Multiple Data (SMPD) parallelism via "multi-image" (e.g., httDS //go I bI gOV/fIatS

multithreaded or multiprocess) execution. Towards these ends,

)

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

« Most Fiats procedures are pure and thus satisfy a language
requirement for invocation inside do concurrent ,

Please, No More Loops (Than Necessary)

https://go.lbl.gov/fiats

Fiats:
Inference

[]
example — vim concurrent-inferences.f90 — 90x9 F I atS -
| |

!$omp parallel do default(none) shared(neural_network,inpuls,outputs) collapse(3)

do j=1,1lon
o Inference
do i=1,lat
outputs(i,k,j) = neural_network%infer(inputs(i,k,3j))
end do
end do

end do

example — vim concurrent-inferences.f90 — 90x9

!$omp parallel do default(none) shared(neural_network,inpuls,outputs) collapse(3)
do j=1,1lon
do k=1,lev
do i=1,lat
outputs(i,k,j) = neural_network%infer(inputs(i,k,3j))
end do
end do
end do

fiats — rouson@login38:~/fiats — login38 — vim example/concurrent-inferences.f90 — 103x5

do concurrent(i=1:lat, k=1l:lev, j=1:1lon) default(none) shared(outputs, neural_network, inputs)

outputs(i,k,j) = neural_network%infer(inputs(i,k,3j))
end do

Fiats:
Inference

example — vim concurrent-inferences.f90 — 90x9

I$omp parallel do default(none) shared(neural_network,inpulls,outputs) collapse(3)
do j=1,1lon
do k=1,lev
do i=1,lat
outputs(i,k,j) = neural_network%infer(inputs(i,k,3j))
end do
end do
end do

fiats — rouson®@login38:~/fiats — login38 — vim example/concurrent-inferences.f90 — 103x5

do concurrent(i=1:lat, k=1l:lev, j=1:1lon) default(none) shared(outputs, neural_network, inputs)
outputs(i,k,j) = neural_network%infer(inputs(i,k,3j))
end do

example — vim concurrent-inferences.f90 — 50x5

I1$Somp workshare
outputs = neural_network%infer(inputs)
I1$omp end workshare

Fiats:
Inference

Automatic Parallelization on Perimutter CPU

28

Automatically parallelizing batch inference on
deep neural networks using Fiats and
Fortran 2023 “do concurrent”

Damian Rouson'®, Zhe Bai'®, Dan Bonachea!®, Kareem Ergawy?®,

Ethan Gutmann®®, Michael Klemm?®, Katherine Rasmussen'®,
Brad Richardson!®, Sameer Shende®, David Torres®®, and Yunhao Zhang®

! Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

N
—— e e
R e e

1 2 O - e 2 %43 . e 2
el A
YOGl PR e

! . -

v e L.

F | | ice
(SO o o o) . ch
applications have evaluated or adopted deep neural networks as surrogate mod-
els. At least two categories of solutions have emerged to satisfy the inference
and training needs of Fortran applications: (1) application programming inter-
faces (APIs) that expose functionality provided by software packages written

100 F ideal ———-
do-concurrent —>%—
omp-parallel —=5—

Average Speedup (5 runs)
3

1 10
Cores

100

— —--network model. json

OMP_NUM THREADS=128 fpm run \
--example concurrent-inferences \
--runner "srun --cpu bind=cores -c 128 -n 1" \

Rouson, Bai, Bonachea, Ergawy, Gutmann, Klemm,Rasmussen,
Richardson, Shende, Torres, and Zhang (2025). Automatically
parallelizing batch inference on deep neural networks using Fiats
and Fortran 2023 “do concurrent”. In 5th International Workshop
on Computational Aspects of Deep Learning, Hamburg, Germany.

)

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

u
u
® @® fiats — vim neural_network_s.F90 — 101x36 -

907 #if F2023_LOCALITY
908 iterate_through_batch: &

909 do concurrent (pair = 1:mini_batch_size) local(a,z,delta) reduce(+: dcdb, dcdw) " "
ol rainin
911 #elif F2018_LOCALITY

912

913 reduce_gradients: &

914 block

915 real reduce_dcdb(size(dcdb,1),size(dcdb,2),mini_batch_size)

916 real reduce_dcdw(size(dcdw,1),size(dcdw,2),size(dcdw,3),mini_batch_size)
917 reduce_dcdb = 0.

918 reduce_dcdw = 0.

919

920 iterate_through_batch: &

921 do concurrent (pair = 1:mini_batch_size) local(a,z,delta)

922

923

924

925 reduce_gradients: &

926 block

927 real reduce_dcdb(size(dcdb,1),size(dcdb,2),mini_batch_size)

928 real reduce_dcdw(size(dcdw,1),size(dcdw,2),size(dcdw,3),mini_batch_size)
929 reduce_dcdb = 0.

930 reduce_dcdw = 0.

931

932 iterate_through_batch: &

933 do concurrent (pair = 1:mini_batch_size)

934

935 iteration: &

936 block

937

938 real a(maxval(self%nodes_), input_layer:output_layer) ! Activations
939 real z(size(b,1),size(b,2)), delta(size(b,1),size(b,2))

940 #endif

941

Stochastic
Gradient
Descent +
Adam
Optimizer

2023.f90 — 153x98

associate(eta => learning_rate)
block
integer 1
adjust_welghts_and_biases: &
do concurrent(l = 1:output_layer)
dcdb(1:n(1),1) = dcdb(1:n(1),1)/mini_batch_size
b(1:n(1),1) = b(1:n(1),1) - etaxdcdb(1:n(1),1) ! Adjust biases
dedw(1:n(1),1:n(1-1),1) = dedw(21:n(1),21:n(1-1),1)/mini_batch_size
w(1l:n(1),2:n(1-1),1) = w(1l:n(1),1:n(1-1),1) - etaxdcdw(1l:n(1),1:n(1-1),1) ! Adjust weights

end do adjust_weights_and_biases

o bloc
(~96 statements in which nearly every
rate_across_batches statement implicitly exposes parallelism,
e.g., multidimensional array statements
inside do concurrent constructs

Deep Learning with Fiats

[) fiats — vim neural_network_m.f90 — 90x14

type neural_network_(ii}
I'l Encapsulate the ITMformation needed to perform inference

integer, kind :: k = default_real

type(tensor_map_t(k)), private ::

type(metadata_t), private ::

real(k), allocatable, private ::

integer, allocatable, private ::

type(activation_t), private ::
contains

input_map_, output_map_
metadata_

weights_(:,:,:), biases_(:
nodes_(:)

activation_

default_real_infer,
default_real_infer,

double_precision_infer
double_precision_infer

Kind type parameter
allows us to set an
object’s precision in its
declaration without
recompiling.

generic :: infer =>
procedure, private,(non_overridable);:
generic :: learn =>

procedure, private, non_overridable ::

Please, No More Loops (Than Necessary)

default_real_learn
default_real_learn

33,1

6%

Non overridable
attribute prevents
dynamic dispatch,
thereby facilitating
future GPU execution.

https://doi.org/10.25344/S4VG6T

)

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

https://doi.org/10.25344/S4VG6T

Parallel Runtime Interface for Fortran (PRIF)™

. . .. Parallel .
e Compiler- and runtime-agnostic interface =

to support multi-image parallel Fortran features @
. l?uminw
e A runtime interface written in Fortran: prif module Compiled Fortran Code lbeary-
e Tight correspondence between PRIF procedures and |
Fortran’s multi-image parallel features, e.g., Compiler Runtime ‘
PRIF
. . . Compiler-
© num_images — prif_num_images Parallel Runtime independent
. . . . Language-
o real x(N)[*] — prif_allocate_coarray Communication Library independent
(i.e. GASNet, MPI, SHMEM, etc.)
. : : :
For more information, please see go.lbl.gov/prif and D —
fortran.lbl. goVv. (InfiniBand, Slingshot, Aries,
Omni-Path, Ethernet, ...)

D. Bonachea, K. Rasmussen, B. Richardson, D. Rouson, "Parallel Runtime Interface for
Fortran (PRIF): A Multi-Image Solution for LLVM Flang", Tenth Workshop on the LLVM ~
Compiler Infrastructure in HPC (LLVM-HPC2024), Nov. 2024. d0i:10.2 17. L s H

BERKELEY LAB

Bringing Science Solutions to the World

Please, No More Loops (Than Necessary)

https://go.lbl.gov/prif
https://fortran.lbl.gov
https://doi.org/10.25344/S4N017

LLVM-HPC Workshop at SC25 Paper

e Paper highlights the increased LLVM Flang compiler support for
Fortran’s multi-image features, a subset of which has now been
upstreamed, thanks to the support of the NERSC/CLaSS
collaboration

e Perlmutter runs in distributed memory show LLVM Flang is
comparable with Cray’s long extant multi-image Fortran support

e Cray ftn compiler bug encountered while compiling a coarray
benchmark on Perlmutter: NERSC ticket INC0241058

(a) flang and Caffeine (b) HPE Cray Fortran

Figure 5: Results from running Caf-testsuite in distributed memory across two nodes of the NERSC Perlmutter supercomputer,
connected over an HPE Slingshot 11 network

‘The Eleventh Annual Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC’25)

Lowering and Runtime Support for Fortran’s Multi-Image
Parallel Features using LLVM Flang, PRIF, and Caffeine

Dan Bonachea Jean-Didier Pailleux Brad Richardson
Katherine Rasmussen Etienne Renault brad richardson@nasa.gov
Damian Rouson jean-didier pailleux@sipearl com Amentum Services, Inc.
fortran@lbLgov etienne renault@sipearl com Houston, Texas, USA
Lawrence Berkeley National SiPearl, R&D
Laboratory Maisons-Laffitte, France
Berkeley, California, USA
ABSTRACT 1 INTRODUCTION
This pape provides an overview of the mutimage paralll e LLVM [2] proides ighy modsla,extensible complation pipe
tures in Fortran 2023 and their implementation in the LLVM Flang CandC:
has been made to focus the

compiler and th Caffine panllcl runtime library. The features Fellowmg a similrpatten,
[41]

e towrds an LLVA bar d
o nmmlng & ol based o exceuting maltiple “images’, ach of LVM

Global Address Space (PGAS) in the form of “coarray” distributed

data structures. The paper discusses the lowering of multi-image

features to the Parallel Runtime Interfa
the C:

ably to another open-source compiler and runtime library: GNU crayftn) have production-ready suppor
Compiler Collection (GCC) gfor tran and OpenCoarrays, respec- multi-image features, this s still missi
tively. .

CCS CONCEPTS

 Software and it engincering —» Runtime environments;
Parallel p
gies — Parallel programming languages.

atory Commission ode i any one of mumerous
the

ifein one
ORDS Teams
KEYWORD! are also writing Fortran software in emerging disciplines such as
Fortran, Parallel programming, HPC, PGAS, RMA, LLVM Flang, deep learning [32] and to develop tools in areas where Fortran has
Exascale Computing, Runtime Libraries Caffeine, GASNet-EX ot il ooyl s s

tures of Fortran allow developers of scientific softw:
ot thecapllities o HPG sty while il expesing teix
algorithms in standard Fortran, and increased compiler support for

these features will benefit the Fortran

(©2025 LBNL doi: 10.25344/54G883 1

Dan Bonachea, Katherine Rasmussen, Damian Rouson, Jean-Didier Pailleux, Etienne Renault, Brad Richardson.
"Lowering and Runtime Support for Fortran’s Multi-lmage Parallel Features using LLVM Flang, PRIF, and
Caffeine", Workshops of the International Conference for High Performance Computing, Networking, Storage and
Analysis (SC Workshops '25), November 16-21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.25344/S4G883

33

https://nersc.servicenowservices.com/nav_to.do?uri=incident.do?sys_id=fa6e2f3b97376e90b052daa00153afee&sysparm_stack=incident_list.do?sysparm_query=active=true
https://doi.org/10.25344/S4G883

Caffeine: Co-Array Fortran Framework of Efficient 34
Interfaces to Network Environments

e Caffeine is written mostly in (serial) Fortran
e Invokes GASNet-EX communication library

e PRIF implementation status:
go.lbl.gov/caffeine-status

e < = github.com/berkeleylabjcaffeine / B+ D
Releases 6
00 README & License p = © 05.2 (Latest)
on Jun 4
+5 releases
Caffeine

Contributors 7

CoArray Fortran Framework of Efficient Interfaces to
Network Environments e * @ l k) 4 ’

Caffeine is a parallel runtime library that aims to support
Fortran compilers with a programming-model-agnostic
application interface to various communication libraries.
Current work is on supporting the Parallel Runtime
Interface for Fortran (PRIF) with the GASNet-EX I
ready networking middleware. Future plans include
support for an alternative Message Passing Interface (MPI)
back end.

Languages

® Fortran 49.4% ® C476%
Shell 3.0%

Compiled Application
e -] -1 | -~

System Runtime & Memory Technologies

Multi-image Fortran Feature Status
Program startup and shutdown (incl. normal and error termination): STOP, ERROR STOP, END PROGRAM statements | yes
Collective subroutines: CO_{BROADCAST, SUM,MIN,MAX, REDUCE} yes
Image queries: THIS_IMAGE, NUM_IMAGES, etc, intrinsic functions yes
Synchronization: SYNC {ALL,IMAGES,MEMORY, TEAM} statements yes
Storage management: Coarray allocation, deallocation and coarray aliases yes
Coarray Queries: LCOBOUND, UCOBOUND, COSHAPE, etc. yes
Contiguous and strided coarray access: Coarray puts and gets yes
Teams: TEAM_TYPE intrinsic type and {FORM, CHANGE ,END} TEAM statements yes
Events: EVENT_TYPE intrinsic type, EVENT_QUERY subroutine and EVENT {POST,WAIT} statements yes
Notifications: NOTIFY_TYPE intrinsic type and NOTIFY WAIT statement yes
Atomics: ATOMIC_{INT,LOGICAL}_KIND kind parameters and ATOMIC_{DEFINE,REF, ...} subroutines yes
Critical construct: CRITICAL and END CRITICAL no
Locks: LOCK and UNLOCK statements no
FAIL IMAGE statement no

Please, No More Loops (Than Necessary)

go.lbl.gov/caffeine

)

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

https://go.lbl.gov/caffeine-status
https://go.lbl.gov/caffeine

Fortran Package Manager (fpm)

fiats — vim fpm.toml — 77x5

Iamo = "fiats" .
[dependencies] 6 a bUIld System
(actual size)

julienne = {git = "https://github.com/berkeleylab/julienne",

""" ﬂ BERKELEY LAB

Please, No More Loops (Than Necessar
’ Ps (y) Bringing Science Solutions to the World

Overview

04

Conclusions

rrrrrr

H BERKELEY LAB

Please, No More Loops (Than Necessar
’ Ps (y) Bringing Science Solutions to the World

~

rrrrrr

Bringing Science Solutions to the World

U.S. DEPARTMENT OF

ENERGY

Office of Science

| 8

“Fortran is a new and exciting language
used by programmers to communicate
with computers. It is exciting as it is the
wave of the future.”

Character of Dorothy Vaughan,

a NASA mathematician and programmer,

as played by Octavia Spencer in

Hidden Figures (20th Century Fox, 2016).
37

In Defense of
Food: An Eater’s
Manifesto

Eat food.

Not too much.

Mostly plants.

In Defense of
Software:
A Developer’s
Manifesto

Write software.
Not too much.

Mostly pure functions.

Conclusions

Several underutilized feature sets facilitate writing

- 46-fold savings in supporting binary operators with elemental functions
- State-of-the-art neural network training in fewer than 100 lines of code

- Multi-image execution for SPMD/PGAS programming
- Automatic loop-level multithreading or offloading to a GPU

- Pure procedures
- Immutable state: associate construct

- Natural language idioms
- Textbook forms of partial differential equations

Thank You!

