
Please, No More Loops (Than Necessary):
New Patterns in Fortran 2023

Damian Rouson

Computer Languages and Systems Software (CLaSS) Group

HPC Best Practices Webinar, 21 January 2026

1

https://go.lbl.gov/fortran

Please, No More Loops (Than Necessary)

Acknowledgements

2

The Berkeley Lab Fortran Team

Dan Bonachea, Brandon Cook, Paul Hargrove, Hugh Kadhem, Kate Rasmussen

Collaborators

Julienne: Katherine Rasmussen, Dan Bonachea

Fiats: Zhe Bai, Jeremiah Bailey, Baboucarr Dibba, Dan Bonachea, Ethan Gutmann, Brad Richardson, Sameer
Shende, David Torres, Katherine Rasmussen, Kareem Jabbar Weaver, Jordan Welsman, Yunhao Zhang

Formal, MOLE: Dan Bonachea, Jose Castillo, Johnny Corbino, Joseph Hellmers

Flang, Caffeine, PRIF: Dan Bonachea, Kareem Ergawy, Jeff Hammond, Michael Klemm, Jean-Didier Pailleux,
Etienne Renault, Katherine Rasmussen, Brad Richardson

Matcha: Dan Bonachea, David Torres, Dominick Martinez

Sponsors
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, and Office of Nuclear Physics. This research used resources of the National Energy

Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231. This research was supported

by the Lawrence Berkeley National Laboratory Laboratory Research and Development (LDRD) program.

Please, No More Loops (Than Necessary)

04
Conclusions

03

Use Cases:
Nooks,
Crannies, and
Pastures

Overview
02

Features &
Paradigms:
A walking tour
from Fortran 90
to 202Y

01
Background:
Deep origins

Please, No More Loops (Than Necessary)

01
Background:
Deep origins

04
Conclusions

Overview
02

Features &
Paradigms:
A walking tour
from Fortran 90
to 202Y

03

Use Cases:
Nooks,
Crannies, and
Pastures

Please, No More Loops | Berkeley Lab

John Backus (1924-2007)
Pioneers in Science and Technology Series: John Backus, 1984

© City of Oak Ridge, Oak Ridge, TN 3783 (Public Domain)
https://cdm16107.contentdm.oclc.org/digital/collection/p15388coll1/

The Fortran Automatic Coding System for the IBM 704,
the first programmer’s reference manual for Fortran

(Public Domain)

1956

5

Please, No More Loops | Berkeley Lab

“… the DO statement causes the
succeeding statements to be

carried out repeatedly…”

6

Please, No More Loops (Than Necessary)

04
Conclusions

03

Use Cases:
Nooks,
Crannies, and
Pastures

Overview
02

Features &
Paradigms:
A walking tour
from Fortran 90
to 202Y+

01
Background:
Deep origins

Please, No More Loops (Than Necessary)

New Features

}Object-Based Programming

Array programming

Functional programming

Modular programming}
}

}

Structured programming

}

90

Derived types

Structure constructors

Derived type input/output (I/O)

Data and procedure privacy

Pointers (required for dynamically allocating object components)

Defined operations and defined assignments

Recursive procedures

Allocatable arrays

Array statements, structure constructors, and intrinsic functions

Modules

Interface blocks & bodies, including generic interfaces

Structured branching and looping

Kind parameters and related intrinsic functions

Free-form source (.f90)

Paradigms

8

Please, No More Loops (Than Necessary)

pure procedures
elemental procedures

where construct
forall construct (obsolescent)

9590

} Functional programming

} Array programming

Parallel/vector programming}

New Features Paradigms

9

Please, No More Loops (Than Necessary)

2003
Type extension, type-bound procedures, polymorphism, and final subroutines

Generic bindings, including type-bound operators and assignments

Type/source allocation & automatic (re-)allocation via intrinsic assignment

Allocatable scalars and components

Parameterized derived types

Vector subscripts

Abstract types, abstract interfaces, and deferred bindings

Associate construct

iso_c_binding module

Iso_fortran_env module: input_unit, error_unit,…

New Features Paradigms

Object-Oriented Programming (OOP)

Functional programming
Object-Oriented Design Patterns (OOD)
Array programming

Generic programming

}
}

}
}

}

(C Interoperability)}

9590

10

Please, No More Loops (Than Necessary)

images

coarrays

synchronization, critical blocks, locks

Atomic subroutines and atomic kinds
do concurrent

Impure elemental procedures

Contiguous array dummy arguments

Pointer rank remapping

Mold allocation and automatic type (re-)allocation via intrinsic assignment

Submodules, module procedure interfaces

2008

New Features

90

Paradigms

Parallel/GPU programming:
• SPMD
• PGAS
• Shared or distributed memory

Array programming

Modular programming

}
}

}

200395

11

Please, No More Loops (Than Necessary)

2018

Kind parameters: c_int32_t, …

Assumed-type (type(*)) and assumed-rank (a(..))dummy arguments and rank guarding (select rank)

ISO_Fortran_binding.h:

Data structures: CFI_cdesc_t, CFI_dim_t, CFI_rank_t, CFI_type_t, CFI_attribute_t

Functions: CFI_address(), CFI_allocate(), CFI_deallocate(), CFI_establish(),
CFI_is_contiguous(), CFI_section()

Collective subroutines: co_sum, co_broadcast, co_min, co_max, co_reduce

Events: event_type, event_query(), event wait, event post

Locality specifiers for do concurrent: local, shared, default(none)

Teams

Failed images

90

(C-Interoperability)

}Parallel/vector programming

Paradigms

}
2008200395

New Features

12

Please, No More Loops (Than Necessary)

2018

do concurrent reduce locality
put notifications: notify_type, notify wait

enumeration types

maximum statement length: 1 million characters

New Features

90

Parallel/vector programming

Paradigms

}
2008200395 2023

13

Please, No More Loops (Than Necessary)

2018

Type-safe templates

Generic subroutines

Enhanced collective subroutines: team collectives,
asynchronous collectives

New Features

90

Generic programming

Paradigms

}

2008200395 2023 202Y

} Parallel programming

14

Please, No More Loops (Than Necessary)

Nooks & Crannies

15

Please, No More Loops (Than Necessary)

Fortran 2018 Intrinsic Functions
2018-08-28 WD 1539-1 J3/18-007r1

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
ALL (MASK) or (MASK, DIM) T Array reduced by .AND. operator.
ALLOCATED (ARRAY) or (SCALAR) I Allocation status of allocatable variable.
ANINT (A [, KIND]) E Nearest whole number.
ANY (MASK) or (MASK, DIM) T Array reduced by .OR. operator.
ASIN (X) E Arcsine (inverse sine) function.
ASINH (X) E Inverse hyperbolic sine function.
ASSOCIATED (POINTER [, TARGET]) I Pointer association status inquiry.
ATAN (X) or (Y, X) E Arctangent (inverse tangent) function.
ATAN2 (Y, X) E Arctangent (inverse tangent) function.
ATANH (X) E Inverse hyperbolic tangent function.
ATOMIC_ADD (ATOM, VALUE [, STAT]) A Atomic addition.
ATOMIC_AND (ATOM, VALUE [, STAT]) A Atomic bitwise AND.
ATOMIC_CAS (ATOM, OLD, COMPARE,

VALUE [, STAT])
A Atomic compare and swap.

ATOMIC_DEFINE (ATOM, VALUE [, STAT]) A Define a variable atomically.
ATOMIC_FETCH_-
ADD

(ATOM, VALUE, OLD
[, STAT])

A Atomic fetch and add.

ATOMIC_FETCH_-
AND

(ATOM, VALUE, OLD
[, STAT])

A Atomic fetch and bitwise AND.

ATOMIC_FETCH_-
OR

(ATOM, VALUE, OLD
[, STAT])

A Atomic fetch and bitwise OR.

ATOMIC_FETCH_-
XOR

(ATOM, VALUE, OLD
[, STAT])

A Atomic fetch and bitwise exclusive OR.

ATOMIC_OR (ATOM, VALUE [, STAT]) A Atomic bitwise OR.
ATOMIC_REF (VALUE, ATOM [, STAT]) A Reference a variable atomically.
ATOMIC_XOR (ATOM, VALUE [, STAT]) A Atomic bitwise exclusive OR.
BESSEL_J0 (X) E Bessel function of the 1st kind, order 0.
BESSEL_J1 (X) E Bessel function of the 1st kind, order 1.
BESSEL_JN (N, X) E Bessel function of the 1st kind, order N.
BESSEL_JN (N1, N2, X) T Bessel functions of the 1st kind.
BESSEL_Y0 (X) E Bessel function of the 2nd kind, order 0.
BESSEL_Y1 (X) E Bessel function of the 2nd kind, order 1.
BESSEL_YN (N, X) E Bessel function of the 2nd kind, order N.
BESSEL_YN (N1, N2, X) T Bessel functions of the 2nd kind.
BGE (I, J) E Bitwise greater than or equal to.
BGT (I, J) E Bitwise greater than.
BIT_SIZE (I) I Number of bits in integer model 16.3.
BLE (I, J) E Bitwise less than or equal to.
BLT (I, J) E Bitwise less than.
BTEST (I, POS) E Test single bit in an integer.
CEILING (A [, KIND]) E Least integer greater than or equal to A.
CHAR (I [, KIND]) E Character from code value.
CMPLX (X [, KIND]) or

(X [, Y, KIND])
E Conversion to complex type.

CO_BROADCAST (A, SOURCE_IMAGE [,
STAT, ERRMSG])

C Broadcast value to images.

CO_MAX (A [, RESULT_IMAGE,
STAT, ERRMSG])

C Compute maximum value across images.

CO_MIN (A [, RESULT_IMAGE,
STAT, ERRMSG])

C Compute minimum value across images.

CO_REDUCE (A, OPERATION [,
RESULT_IMAGE, STAT,
ERRMSG])

C Generalized reduction across images.

J3/18-007r1 333

J3/18-007r1 WD 1539-1 2018-08-28

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
CO_SUM (A [, RESULT_IMAGE,

STAT, ERRMSG])
C Compute sum across images.

COMMAND_ARGU-
MENT_COUNT

() T Number of command arguments.

CONJG (Z) E Conjugate of a complex number.
COS (X) E Cosine function.
COSH (X) E Hyperbolic cosine function.
COSHAPE (COARRAY [, KIND]) I Sizes of codimensions of a coarray.
COUNT (MASK [, DIM, KIND]) T Logical array reduced by counting true

values.
CPU_TIME (TIME) S Processor time used.
CSHIFT (ARRAY, SHIFT [, DIM]) T Circular shift of an array.
DATE_AND_TIME ([DATE, TIME, ZONE,

VALUES])
S Date and time.

DBLE (A) E Conversion to double precision real.
DIGITS (X) I Significant digits in numeric model.
DIM (X, Y) E Maximum of X ≠ Y and zero.
DOT_PRODUCT (VECTOR_A,

VECTOR_B)
T Dot product of two vectors.

DPROD (X, Y) E Double precision real product.
DSHIFTL (I, J, SHIFT) E Combined left shift.
DSHIFTR (I, J, SHIFT) E Combined right shift.
EOSHIFT (ARRAY, SHIFT [,

BOUNDARY, DIM])
T End-o� shift of the elements of an array.

EPSILON (X) I Model number that is small compared
to 1.

ERF (X) E Error function.
ERFC (X) E Complementary error function.
ERFC_SCALED (X) E Scaled complementary error function.
EVENT_QUERY (EVENT, COUNT [, STAT]) S Query event count.
EXECUTE_COM-
MAND_LINE

(COMMAND [, WAIT,
EXITSTAT, CMDSTAT,
CMDMSG])

S Execute a command line.

EXP (X) E Exponential function.
EXPONENT (X) E Exponent of floating-point number.
EXTENDS_TYPE_-
OF

(A, MOLD) I Dynamic type extension inquiry.

FAILED_IMAGES ([TEAM, KIND]) T Indices of failed images.
FINDLOC (ARRAY, VALUE, DIM [,

MASK, KIND, BACK]) or
(ARRAY, VALUE [, MASK,
KIND, BACK])

T Location(s) of a specified value.

FLOOR (A [, KIND]) E Greatest integer less than or equal to A.
FRACTION (X) E Fractional part of number.
GAMMA (X) E Gamma function.
GET_COMMAND ([COMMAND, LENGTH,

STATUS, ERRMSG])
S Get program invocation command.

GET_COMMAND_-
ARGUMENT

(NUMBER [, VALUE,
LENGTH, STATUS,
ERRMSG])

S Get program invocation argument.

GET_ENVIRON-
MENT_VARIABLE

(NAME [, VALUE,
LENGTH, STATUS,
TRIM_NAME, ERRMSG])

S Get environment variable.

334 J3/18-007r1

2018-08-28 WD 1539-1 J3/18-007r1

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
GET_TEAM ([LEVEL]) T Team.
HUGE (X) I Largest model number.
HYPOT (X, Y) E Euclidean distance function.
IACHAR (C [, KIND]) E ASCII code value for character.
IALL (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Array reduced by IAND function.

IAND (I, J) E Bitwise AND.
IANY (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Array reduced by IOR function.

IBCLR (I, POS) E I with bit POS replaced by zero.
IBITS (I, POS, LEN) E Specified sequence of bits.
IBSET (I, POS) E I with bit POS replaced by one.
ICHAR (C [, KIND]) E Code value for character.
IEOR (I, J) E Bitwise exclusive OR.
IMAGE_INDEX (COARRAY, SUB) or

(COARRAY, SUB, TEAM)
or (COARRAY, SUB,
TEAM_NUMBER)

T Image index from cosubscripts.

IMAGE_STATUS (IMAGE [, TEAM]) E Image execution state.
INDEX (STRING, SUBSTRING [,

BACK, KIND])
E Character string search.

INT (A [, KIND]) E Conversion to integer type.
IOR (I, J) E Bitwise inclusive OR.
IPARITY (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Array reduced by IEOR function.

ISHFT (I, SHIFT) E Logical shift.
ISHFTC (I, SHIFT [, SIZE]) E Circular shift of the rightmost bits.
IS_CONTIGUOUS (ARRAY) I Array contiguity test (8.5.7).
IS_IOSTAT_END (I) E IOSTAT value test for end of file.
IS_IOSTAT_EOR (I) E IOSTAT value test for end of record.
KIND (X) I Value of the kind type parameter of X.
LBOUND (ARRAY [, DIM, KIND]) I Lower bound(s).
LCOBOUND (COARRAY [, DIM, KIND]) I Lower cobound(s) of a coarray.
LEADZ (I) E Number of leading zero bits.
LEN (STRING [, KIND]) I Length of a character entity.
LEN_TRIM (STRING [, KIND]) E Length without trailing blanks.
LGE (STRING_A, STRING_B) E ASCII greater than or equal.
LGT (STRING_A, STRING_B) E ASCII greater than.
LLE (STRING_A, STRING_B) E ASCII less than or equal.
LLT (STRING_A, STRING_B) E ASCII less than.
LOG (X) E Natural logarithm.
LOG_GAMMA (X) E Logarithm of the absolute value of the

gamma function.
LOG10 (X) E Common logarithm.
LOGICAL (L [, KIND]) E Conversion between kinds of logical.
MASKL (I [, KIND]) E Left justified mask.
MASKR (I [, KIND]) E Right justified mask.
MATMUL (MATRIX_A, MATRIX_B) T Matrix multiplication.
MAX (A1, A2 [, A3, ...]) E Maximum value.
MAXEXPONENT (X) I Maximum exponent of a real model.
MAXLOC (ARRAY, DIM [, MASK,

KIND, BACK]) or (ARRAY
[, MASK, KIND, BACK])

T Location(s) of maximum value.

J3/18-007r1 335

J3/18-007r1 WD 1539-1 2018-08-28

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
MAXVAL (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Maximum value(s) of array.

MERGE (TSOURCE, FSOURCE,
MASK)

E Expression value selection.

MERGE_BITS (I, J, MASK) E Merge of bits under mask.
MIN (A1, A2 [, A3, ...]) E Minimum value.
MINEXPONENT (X) I Minimum exponent of a real model.
MINLOC (ARRAY, DIM [, MASK,

KIND, BACK]) or (ARRAY
[, MASK, KIND, BACK])

T Location(s) of minimum value.

MINVAL (ARRAY, DIM [, MASK]) or
(ARRAY [, MASK])

T Minimum value(s) of array.

MOD (A, P) E Remainder function.
MODULO (A, P) E Modulo function.
MOVE_ALLOC (FROM, TO [, STAT,

ERRMSG])
PS Move an allocation.

MVBITS (FROM, FROMPOS, LEN,
TO, TOPOS)

ES Copy a sequence of bits.

NEAREST (X, S) E Adjacent machine number.
NEW_LINE (A) I Newline character.
NINT (A [, KIND]) E Nearest integer.
NORM2 (X) or (X, DIM) T L2 norm of an array.
NOT (I) E Bitwise complement.
NULL ([MOLD]) T Disassociated pointer or unallocated al-

locatable entity.
NUM_IMAGES () or (TEAM) or (TEAM_-

NUMBER)
T Number of images.

OUT_OF_RANGE (X, MOLD [, ROUND]) E Whether a value cannot be converted
safely.

PACK (ARRAY, MASK [,
VECTOR])

T Array packed into a vector.

PARITY (MASK) or (MASK, DIM) T Array reduced by .NEQV. operator.
POPCNT (I) E Number of one bits.
POPPAR (I) E Parity expressed as 0 or 1.
PRECISION (X) I Decimal precision of a real model.
PRESENT (A) I Presence of optional argument.
PRODUCT (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Array reduced by multiplication.

RADIX (X) I Base of a numeric model.
RANDOM_INIT (REPEATABLE, IMAGE_-

DISTINCT)
S Pseudorandom number generator ini-

tialization.
RANDOM_NUMBER (HARVEST) S Generate pseudorandom number(s).
RANDOM_SEED ([SIZE, PUT, GET]) S Pseudorandom number generator con-

trol.
RANGE (X) I Decimal exponent range of a numeric

model (16.4).
RANK (A) I Rank of a data object.
REAL (A [, KIND]) E Conversion to real type.
REDUCE (ARRAY, OPERATION,

DIM [, MASK, IDENTITY,
ORDERED]) or (ARRAY,
OPERATION [, MASK,
IDENTITY, ORDERED])

T General reduction of array

336 J3/18-007r1

2018-08-28 WD 1539-1 J3/18-007r1

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
REPEAT (STRING, NCOPIES) T Repetitive string concatenation.
RESHAPE (SOURCE, SHAPE [, PAD,

ORDER])
T Arbitrary shape array construction.

RRSPACING (X) E Reciprocal of relative spacing of model
numbers.

SAME_TYPE_AS (A, B) I Dynamic type equality test.
SCALE (X, I) E Real number scaled by radix power.
SCAN (STRING, SET [, BACK,

KIND])
E Character set membership search.

SELECTED_CHAR_-
KIND

(NAME) T Character kind selection.

SELECTED_INT_-
KIND

(R) T Integer kind selection.

SELECTED_REAL_-
KIND

([P, R, RADIX]) T Real kind selection.

SET_EXPONENT (X, I) E Real value with specified exponent.
SHAPE (SOURCE [, KIND]) I Shape of an array or a scalar.
SHIFTA (I, SHIFT) E Right shift with fill.
SHIFTL (I, SHIFT) E Left shift.
SHIFTR (I, SHIFT) E Right shift.
SIGN (A, B) E Magnitude of A with the sign of B.
SIN (X) E Sine function.
SINH (X) E Hyperbolic sine function.
SIZE (ARRAY [, DIM, KIND]) I Size of an array or one extent.
SPACING (X) E Spacing of model numbers.
SPREAD (SOURCE, DIM, NCOPIES) T Value replicated in a new dimension.
SQRT (X) E Square root.
STOPPED_IMAGES ([TEAM, KIND]) T Indices of stopped images.
STORAGE_SIZE (A [, KIND]) I Storage size in bits.
SUM (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Array reduced by addition.

SYSTEM_CLOCK ([COUNT, COUNT_RATE,
COUNT_MAX])

S Query system clock.

TAN (X) E Tangent function.
TANH (X) E Hyperbolic tangent function.
TEAM_NUMBER ([TEAM]) T Team number.
THIS_IMAGE ([TEAM]) T Index of the invoking image.
THIS_IMAGE (COARRAY [, TEAM]) or

(COARRAY, DIM [,
TEAM])

T Cosubscript(s) for this image.

TINY (X) I Smallest positive model number.
TRAILZ (I) E Number of trailing zero bits.
TRANSFER (SOURCE, MOLD [, SIZE]) T Transfer physical representation.
TRANSPOSE (MATRIX) T Transpose of an array of rank two.
TRIM (STRING) T String without trailing blanks.
UBOUND (ARRAY [, DIM, KIND]) I Upper bound(s).
UCOBOUND (COARRAY [, DIM, KIND]) I Upper cobound(s) of a coarray.
UNPACK (VECTOR, MASK, FIELD) T Vector unpacked into an array.
VERIFY (STRING, SET [, BACK,

KIND])
E Character set non-membership search.

3 The e�ect of calling EXECUTE_COMMAND_LINE on any image other than image 1 in the initial team is1
processor dependent.2

J3/18-007r1 337

16

Please, No More Loops (Than Necessary)

Expansive Pastures

17Davos, Switzerland, on the way to PASC23

Please, No More Loops (Than Necessary)

Fortran 2023 Multi-Image Features
• Intrinsic subroutines

– Collective subroutines: CO_SUM, CO_MAX,
CO_MIN, CO_REDUCE, CO_BROADCAST

– Atomic subroutines: ATOMIC_ADD,
ATOMIC_AND, ATOMIC_CAS, ATOMIC_DEFINE,
ATOMIC_FETCH_ADD, ATOMIC_FETCH_AND,
ATOMIC_FETCH_OR, ATOMIC_FETCH_XOR,
ATOMIC_OR, ATOMIC_REF, ATOMIC_XOR

– Other subroutines: EVENT_QUERY
• Types, kind type parameters, and values

– Intrinsic derived types: EVENT_TYPE,
TEAM_TYPE, LOCK_TYPE, NOTIFY_TYPE

– Atomic kind type parameters:
ATOMIC_INT_KIND and
ATOMIC_LOGICAL_KIND

– Values: STAT_FAILED_IMAGE, STAT_LOCKED,
STAT_LOCKED_OTHER_IMAGE,
STAT_STOPPED_IMAGE, STAT_UNLOCKED,
STAT_UNLOCKED_FAILED_IMAGE

• Statements
– Synchronization

• Explicit: SYNC ALL, SYNC IMAGES,
SYNC MEMORY, SYNC TEAM

• Implicit: ALLOCATE, DEALLOCATE,
STOP, END, MOVE_ALLOC

– Events: EVENT POST, EVENT WAIT
– Notify: NOTIFY WAIT
– Error termination: ERROR STOP
– Locks: LOCK, UNLOCK
– Failed images: FAIL IMAGE
– Teams: FORM TEAM, CHANGE TEAM
– Critical sections: CRITICAL, END CRITICAL

• Coarray Accesses ([...])
• Intrinsic functions: NUM_IMAGES, THIS_IMAGE,

LCOBOUND, UCOBOUND, TEAM_NUMBER,
GET_TEAM, FAILED_IMAGES, STOPPED_IMAGES,
IMAGE_STATUS, COSHAPE, IMAGE_INDEX

18

Please, No More Loops (Than Necessary)

04
Conclusions

03

Use Cases:
Nooks,
Crannies, and
Pastures

Overview
02

Features &
Paradigms:
A walking tour
from Fortran 90
to 2023 &
beyond

01
Background:
Deep origins

Please, No More Loops (Than Necessary)

https://go.lbl.gov/julienne

Correctness-Checking with Julienne
Unified Idioms for writing

– Unit tests
– Assertions

Support for Fortran 2023 parallelism
– Multi-image testing: a collective

reduction detects failure on a
subset of images

– Assertions are pure procedures
as required for invocation inside
a do concurrent construct.

Rouson, Bonachea, & Rasmussen, "Idiomatic Correctness-
Checking via Julienne in Fortran 2023", Proceedings of the
US Research Software Engineering Conference, October 2025.
DOI: 10.25344/S4BG65

https://go.lbl.gov/julienne
https://doi.org/10.25344/S4BG65
https://doi.org/10.25344/S4BG65
https://doi.org/10.25344/S4BG65
https://us-rse.org/usrse25/
https://doi.org/10.25344/S4BG65

Please, No More Loops (Than Necessary)

Julienne Idioms

Elemental Operators:
– Defined as pure functions
– Binary operators accept conformable operands:

• Same-shaped arrays
• Scalar/array combinations

Any 1 elemental function defining a binary operator
accepts 46 combinations of operands:
• 1 for scalar operands
• 15 for array operands of rank 1-15
• 30 for scalar/array combinations in either order

<latexit sha1_base64="G60T4ouz5kZRbOYmKM68M+ZvrSc=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGK/YA2lM120y7dZMPuRCmhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bRqWa8QZTUul2QA2XIuYNFCh5O9GcRoHkrWB0M/Vbj1wboeIHHCfcj+ggFqFgFK3U6d6LwRCp1uqpVyq7FXcGsky8nJQhR71X+ur2FUsjHiOT1JiO5yboZ1SjYJJPit3U8ISyER3wjqUxjbjxs9nJE3JqlT4JlbYVI5mpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMxEmKPGbzRWEqCSoy/Z/0heYM5dgSyrSwtxI2pJoytCkVbQje4svLpHle8aqV6t1FuXadx1GAYziBM/DgEmpwC3VoAAMFz/AKbw46L8678zFvXXHymSP4A+fzB5StkXg=</latexit>→

Please, No More Loops (Than Necessary)

https://go.lbl.gov/formal

Writing PDE Solvers with Formal
Fortran mimetic abstraction language

– Derived types that mimic tensor fields
– Differential and integral operators
– Supported by a discrete calculus based

on the mimetic discretizations of Corbino
& Castillo (2020).

Future work
– An embedded domain-specific language

(DSL) for tensor calculus
– Formal verification leveraging problem-

specific proof by testing
– Tensor contractions for machine learning
Corbino, J., & Castillo, J. E. (2020). “High-order mimetic finite-difference
operators satisfying the extended Gauss divergence theorem”.
Journal of Computational and Applied Mathematics, 364, 112326.

https://go.lbl.gov/formal

Please, No More Loops (Than Necessary)

Towards Verified Transformations to a DSL 24

“When writing type-safe templates in Fortran, you can consider
the requirements as defining a DSL for the template body. Such
DSLs are extremely cheap to define, just a collection of derived

declarations, and have no runtime overhead.”

Prof. Magne Haveraaen
Bergen Language Design Laboratory

University of Bergen

Slide content courtesy of T. Clune, NASA Goddard Space

REQUIREMENT Construct

REQUIREMENT binop(op, T, U, V)
 DEFERRED TYPE :: T, U, V
 DEFERRED INTERFACE
 FUNCTION op(x,y) RESULT(z)
 TYPE(T), INTENT(IN) :: x
 TYPE(U), INTENT(IN) :: y
 TYPE(V) :: z
 END FUNCTION
 END INTERFACE
END REQUIREMENT

25

A requirement encapsulates a reusable relationship among
deferred arguments.

TEMPLATE my_templ(T, U, plus, times)
 USE requirements_mod, only: binop

 REQUIRE binop(plus, T, U, U) ! Real+complex -> complex
 REQUIRE binop(times, T, U, U) ! Real*complex -> complex
 …
END TEMPLATE

The REQUIRE statement enforces a REQUIREMENT
• Mismatch at template instantiation is compile-time error
• Transitively declares its arguments
• Can appear in template specification and requirement

construct

Please, No More Loops (Than Necessary)

Deep Learning with Fiats

https://go.lbl.gov/fiats

https://go.lbl.gov/fiats

Fiats:
Inference

27

Fiats:
Inference

27

Fiats:
Inference

27

Fiats:
Inference

27

Please, No More Loops (Than Necessary)

Automatic Parallelization on Perlmutter CPU

Rouson, Bai, Bonachea, Ergawy, Gutmann, Klemm,Rasmussen,
Richardson, Shende, Torres, and Zhang (2025). Automatically
parallelizing batch inference on deep neural networks using Fiats
and Fortran 2023 “do concurrent”. In 5th International Workshop
on Computational Aspects of Deep Learning, Hamburg, Germany.

Automatically parallelizing batch inference on
deep neural networks using Fiats and

Fortran 2023 “do concurrent”

Damian Rouson1 , Zhe Bai1 , Dan Bonachea1 , Kareem Ergawy2 ,
Ethan Gutmann3 , Michael Klemm2 , Katherine Rasmussen1 ,

Brad Richardson1 , Sameer Shende4 , David Torres5 , and Yunhao Zhang1

1 Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
2 Advanced Micro Devices GmbH, 85622 Aschheim, Germany

3 National Center for Atmospheric Research, Boulder, CO 80305, USA
4 University of Oregon, Eugene, OR 97403, USA

5 Northern New Mexico College, Española, NM 87532, USA

Abstract. This paper introduces novel programming strategies that
leverage features of the Fortran 2023 standard of the International Stan-
dards Organization (ISO) to automatically parallelize computations on
deep neural networks. The paper focuses on the interplay of object-
oriented, parallel, and functional programming paradigms in the Fiats
deep learning library. We demonstrate how several infrequently-used lan-
guage features play a role in enabling e!cient, parallel execution. Specif-
ically, the ability to explicitly declare that a procedure is pure facili-
tates inference in the context of the language’s loop-parallelism construct
do concurrent. Also, explicitly prohibiting the overriding of a parent
type’s type-bound procedures eliminates the need for dynamic dispatch
in performance-critical code. Finally, this paper uses batch inference cal-
culations on a neural network surrogate for atmospheric aerosol dynamics
to demonstrate that LLVM Flang compiler’s automatic parallelization of
do concurrent achieves roughly the same performance and scalability
as achieved by OpenMP compiler directives. We also demonstrate that
double-precision inference costs 37–72% longer runtime than default-real
precision with most values in the range 57-60%.

Keywords: Atmospheric Sciences · Deep learning · Fortran.

1 Introduction

1.1 Background and Motivation

Fortran programs occupy a significant fraction of the cycles on high-performance
computing (HPC) platforms [1]. In recent years, the developers of many such
applications have evaluated or adopted deep neural networks as surrogate mod-
els. At least two categories of solutions have emerged to satisfy the inference
and training needs of Fortran applications: (1) application programming inter-
faces (APIs) that expose functionality provided by software packages written

BERKELEY LAB Office of
Science

ML Emulation vs. E3SM for cloud-free condition

	1

	10

	100

	1 	10 	100

ideal
do-concurrent
omp-parallel

Av
er
ag
e	
S
pe
ed
up
	(5
	ru
ns
)

Cores

 OMP_NUM_THREADS=128 fpm run \
 --example concurrent-inferences \
 --runner "srun --cpu_bind=cores -c 128 -n 1" \
 — --network model.json

28

Fiats:
Training

29

Stochastic
Gradient
Descent +
Adam
Optimizer

~96 statements in which nearly every
statement implicitly exposes parallelism,
e.g., multidimensional array statements
inside do concurrent constructs

30

Please, No More Loops (Than Necessary)

Deep Learning with Fiats

Kind type parameter
allows us to set an
object’s precision in its
declaration without
recompiling.

Non_overridable
attribute prevents
dynamic dispatch,
thereby facilitating
future GPU execution.

31

https://doi.org/10.25344/S4VG6T

https://doi.org/10.25344/S4VG6T

Please, No More Loops (Than Necessary)

● Compiler- and runtime-agnostic interface
to support multi-image parallel Fortran features

● A runtime interface written in Fortran: prif module

● Tight correspondence between PRIF procedures and
Fortran’s multi-image parallel features, e.g.,

○ num_images → prif_num_images

○ real x(N)[*] → prif_allocate_coarray

● For more information, please see go.lbl.gov/prif and
fortran.lbl.gov.

Parallel Runtime Interface for Fortran (PRIF)

D. Bonachea, K. Rasmussen, B. Richardson, D. Rouson, "Parallel Runtime Interface for
Fortran (PRIF): A Multi-Image Solution for LLVM Flang", Tenth Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC2024), Nov. 2024. doi:10.25344/S4N017.

32

https://go.lbl.gov/prif
https://fortran.lbl.gov
https://doi.org/10.25344/S4N017

LLVM-HPC Workshop at SC25 Paper
● Paper highlights the increased LLVM Flang compiler support for

Fortran’s multi-image features, a subset of which has now been
upstreamed, thanks to the support of the NERSC/CLaSS
collaboration

● Perlmutter runs in distributed memory show LLVM Flang is
comparable with Cray’s long extant multi-image Fortran support

● Cray ftn compiler bug encountered while compiling a coarray
benchmark on Perlmutter: NERSC ticket INC0241058

Dan Bonachea, Katherine Rasmussen, Damian Rouson, Jean-Didier Pailleux, Etienne Renault, Brad Richardson.
"Lowering and Runtime Support for Fortran’s Multi-Image Parallel Features using LLVM Flang, PRIF, and
Caffeine", Workshops of the International Conference for High Performance Computing, Networking, Storage and
Analysis (SC Workshops ’25), November 16–21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.25344/S4G883

33

https://nersc.servicenowservices.com/nav_to.do?uri=incident.do?sys_id=fa6e2f3b97376e90b052daa00153afee&sysparm_stack=incident_list.do?sysparm_query=active=true
https://doi.org/10.25344/S4G883

Please, No More Loops (Than Necessary)

● Caffeine is written mostly in (serial) Fortran

● Invokes GASNet-EX communication library

● PRIF implementation status:
go.lbl.gov/caffeine-status

Caffeine: Co-Array Fortran Framework of Efficient
Interfaces to Network Environments

go.lbl.gov/caffeine

LLVM-HPC’25, November 17, 2025, St Louis, MO, USA Bonachea, Rasmussen, Rouson, Pailleux, Renault, Richardson

Table 1: Status of Ca!eine’s support for the multi-image parallel features of Fortran (as of Ca!eine v0.5.2)

Multi-image Fortran Feature Status
Program startup and shutdown (incl. normal and error termination): STOP, ERROR STOP, END PROGRAM statements yes
Collective subroutines: CO_{BROADCAST,SUM,MIN,MAX,REDUCE} yes
Image queries: THIS_IMAGE, NUM_IMAGES, etc, intrinsic functions yes
Synchronization: SYNC {ALL,IMAGES,MEMORY,TEAM} statements yes
Storage management: Coarray allocation, deallocation and coarray aliases yes
Coarray Queries: LCOBOUND, UCOBOUND, COSHAPE, etc. yes
Contiguous and strided coarray access: Coarray puts and gets yes
Teams: TEAM_TYPE intrinsic type and {FORM,CHANGE,END} TEAM statements yes
Events: EVENT_TYPE intrinsic type, EVENT_QUERY subroutine and EVENT {POST,WAIT} statements yes
Noti"cations: NOTIFY_TYPE intrinsic type and NOTIFY WAIT statement yes
Atomics: ATOMIC_{INT,LOGICAL}_KIND kind parameters and ATOMIC_{DEFINE,REF,...} subroutines yes
Critical construct: CRITICAL and END CRITICAL no
Locks: LOCK and UNLOCK statements no
FAIL IMAGE statement no

3 EVALUATION
3.1 Experimental Methodology
In order to assess the viability of our modi!cations to LLVM as well
as the maturity of both PRIF and Ca"eine, we opted to evaluate our
approach using two benchmarks written by other members of the
Fortran community:

• Caf-testsuite [20], a collection of correctness tests for CoArray
Fortran (CAF) features. It checks whether compilers and run-
times conform to the Fortran standard’s coarray semantics
by verifying the behavior of operations like coarray alloca-
tion, synchronization, image control, and remote memory
access.

• Cafbench [9], a performance benchmarking suite designed
to evaluate and compare the performance of CAF features
across di"erent compiler and runtime implementations. It
focuses on measuring the e#ciency of coarray operations
such as communication (e.g. put, get, sync) and scalability
in multi-image execution environments.

Because multi-image parallel feature performance may be highly
sensitive to the environment, we opted to test our implementation in
shared memory on both AArch64 Neoverse-V1 (AWS Graviton3e™,
64 cores @2.5 Ghz)2 and X86-64 (Intel Xeon™ Sapphire Rapids, 80
cores @2.1Ghz). In both con!gurations, OS and kernel versions are
the same (Linux RHEL 9, kernel v5.14). It should be noted that:

• Our prototype implementation of flang is available at [35]
and we benchmarked at commit c17dd15683e3. The Caf-
feine library used was release version 0.5.2 (commit
36f0d0a73beb). Ca"eine used GASNet-EX [23] library ver-
sion 2024.5.0.

2Other AArch64 architecture were also tested: Neoverse-N1 and Neoverse-V2. Since
they provide similar results, only Neoverse-V1 results are reported here.

• In shared memory, we compared our results with GNU For-
tran version 15.0.0 and OpenCoarrays [12] version 2.10.3,
using OpenMPI version 5.0.8. OpenCoarrays was compiled
using both the library’s default compilation $ags and with
-DSTRIDED in order to activate optimized strided-array trans-
fer support, and the best results reported for each test.

3.2 Comparison with Existing Open-Source
Implementation in Shared Memory Systems

Figure 3 illustrates the comparison between flang/Ca"eine and
GNU-Fortran/OpenCoarrays on both AArch64 and X86-64 using
the benchmarks provided in the Caf-testsuite [20]. We are unable to
conduct measurements of GNU Fortran using Ca"eine at this time,
as only flang currently supports lowering to PRIF. This test suite
measures twomain indicators: latency and bandwidth using various
GET and PUT coarray access operations. Following the benchmark’s
default con!guration, only two images were used. Nevertheless, it
provides an e"ective evaluation of the point-to-point communica-
tion performance for the two di"erent multi-image implementa-
tions.

Each benchmark test (e.g., bidirectional, get_bandwidth,
noncontiguous, partial_data, ping_pong, and put_bandwidth)
runs over a range of data transfer sizes up to 4 MiB to provide a
comprehensive view of overall coarray access performance with
respect to transfer size. Figure 3 represents these individual bench-
marks by box-and-whisker plots. Each row represents the e"ective
transfer bandwidth achieved by a given test across all the transfer
sizes. For more insight, the average transfer bandwidth for each
individual transfer size is additionally superimposed as a dot atop
the box-and-whisker plot.

At !rst glance, it can be observed that our flang/Ca"eine ap-
proach and GNU-Fortran/OpenCoarrays both provide comparable
performance and qualitatively similar trends, regardless of the un-
derlying architecture. This highlights the favorable e#ciency of
our prototype, demonstrating performance comparable to a mature
implementation that’s been in production use for over 10 years.
Two qualitative di"erences that can nonetheless be spotted:

c→2025 LBNL doi: 10.25344/S4G883 4

34

https://go.lbl.gov/caffeine-status
https://go.lbl.gov/caffeine

Please, No More Loops (Than Necessary)

Fortran Package Manager (fpm)

fpm
build system
(actual size)

Please, No More Loops (Than Necessary)

04
Conclusions

Overview
02

Features &
Paradigms:
A walking tour
from Fortran 90
to 202Y+

01
Background:
Deep origins

03

Use Cases:
Nooks,
Crannies, and
Pastures

“Fortran is a new and exciting language
used by programmers to communicate

with computers. It is exciting as it is the
wave of the future.”

Character of Dorothy Vaughan,
a NASA mathematician and programmer,

as played by Octavia Spencer in
Hidden Figures (20th Century Fox, 2016).

1961 37

Slide / 01

Eat food.

Not too much.

Mostly plants.

In Defense of
Food: An Eater’s
Manifesto

38

In Defense of
Software:
A Developer’s
Manifesto

Slide / 01

Write software.

Not too much.

Mostly pure functions.

39

Please, No More Loops (Than Necessary)

Conclusions

40

“Fortran [2023] is a new and exciting language used by programmers to
communicate with [each other].”

Several underutilized feature sets facilitate writing
• Compact code:

- 46-fold savings in supporting binary operators with elemental functions
- State-of-the-art neural network training in fewer than 100 lines of code

• Parallel programs:
- Multi-image execution for SPMD/PGAS programming
- Automatic loop-level multithreading or offloading to a GPU

• Functional programming patterns:
- Pure procedures
- Immutable state: associate construct

• Expressive abstractions:
- Natural language idioms
- Textbook forms of partial differential equations

Please, No More Loops (Than Necessary)

Thank You!

41

https://go.lbl.gov/fortran

