
1

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

Sustainable HPC Software:
A Maintainer's Perspective

Oct. 15 , 2025 | HPC Best Practices Webinar

Damien Lebrun-Grandié
Computational Sciences and Engineering Division

2

Clarifying the Focus: What is “Software Sustainability”?

Working Definition:
The ability for a software project to remain useful and relevant for at least twice its currently projected lifespan.

Focus: Longevity of the codebase and community.
NOT primarily about reducing power consumption (which is Environmental HPC Sustainability).

The Three Pillars of Technical Longevity:

• Adaptability: The ability to be ported to new architectures and adapt to new standards/toolchains

• Maintainability: Ease of fixing bugs and adding features without breaking existing functionality

• Resilience: The health and size of the contributor community

3

• Loosely aware of the entire project

• Track ongoing work and make sure that it gets
reviewed and merged in a timely manner

• Direct the orchestra of developers and reviewers

• Has final responsibility

• Reviews when no reviewer can be found for
an important contribution

• Develops when no developer can be found to
fix an important bug

If something goes wrong, it’s eventually the
maintainer’s fault

What Does A Maintainer Do?

4

The Problem: We rely on complex,
foundational HPC software for
world-changing science, but the
maintenance often lacks resources
and spotlight.

The Ask: What does it take to
sustain a foundational project?

The HPC Software Paradox

55

Talk Roadmap

Bus Factor

Technical Debt

Hyrum’s Law

6

Kokkos in a few numbers:
14 years old project
250k LoC
162 contributors
30+ active developers from 8 institutions
50% ECP C++ software technologies and applications
2.4k users registered on Slack
2.3k stars on GitHub
1 citation per day

Kokkos' reach necessitates careful maintenance.
Carelessness: not catastrophic, but costly.

Stewarding the scientific computing software
ecosystem presents unique challenges.

I'll use examples from my experience as Kokkos
maintainer to explore these challenges.

My journey:
User -> Contributor -> Developer -> Maintainer/Lead

My Perspective: The Kokkos Lens

7

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

Bus Factor:
How Vulnerable is
Your Project?

Generated by Gemini

8

Definition: The risk that a single person
(or small group) leaving the project (“hit
by a bus”) would halt or severely impair
development.

It's not just a joke; it's a structural flaw.

Managing Critical Vulnerabilities: The Bus Factor

https://xkcd.com/2347/

9

Analyze Your Contributor Dependency

What it is: Measures how much
the project depends on its most
active individual contributors.

Why it matters: Highlights risk
areas if key contributors leave.
Useful for sustainability planning
and succession strategy.

10

Elephant Factor

What it is: Analyzes how much
of the project’s contributions
come from a small number of
organizations.

Why it matters: Reveals potential
over-reliance on single entities.
Projects with diverse
organizational support are
generally more robust.

11

Granularity in Bus Factor Analysis

1212

1. The Foundational Risk: Original Team
Vulnerability
The Threat: Lost 2 of 3 original developers over 14
years.
Current Reality: Core resilience still relies heavily on
co-lead.
Lesson: Longevity demands proactive knowledge
decentralization.

2. The Stress Test: The "Quadruple Hit" Exodus
The Crisis: Lost 4 main developers back-to-back
(Google/AMD).
Impact:
 - Build system overhaul (departing developer)
 - High-visibility subproject with no testing
 - Loss of the designated build system backup
Lessons: Multiple single points of failure create
systemic risk.

3. Mitigation: Decentralizing Knowledge &
Infrastructure
Auto-Tuning Subproject Success:
 - Initial risk from maintainer departure (KokkosTools).
 - Mitigation: Design documentation and external
 consultant enabled successful handover and blog-
 post-worthy advancement.
 - Insight: Process & shared design prevent
 collapse.

Testing Infrastructure Resilience:
 - Problem: Single person handled all testing.
 - Solution: Diversified testing load across partner
 organizations (on-prem, open-source, HPSF).
 - Impact: Engaged more developers in maintenance;
 mitigated site failures.
 - Insight: Redundancy in both people and systems.

Bus Factor: Lessons from Kokkos

13

Actionable Strategy 1: Mandatory, reviewed
documentation for all new features.

Actionable Strategy 2: Enforced code review across
different teams/individuals.

Actionable Strategy 3: Create a clear path for new
contributors to become maintainers (i.e., growing the
bus).

Mitigation Strategy: Documentation & Process

Key Takeaway: Growing the Bus
The goal isn't just to survive; it's to decentralize knowledge and grow the
contributor pool.

14

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

The Silent Drag:
Technical Debt

Generated by Gemini

15

Definition: Code or architectural choices made quickly today that
will slow down development tomorrow.
The Issue: The debt interest (slowed velocity, more bugs) is paid
in every subsequent development cycle.

What is it? "Quick fixes" create future rework.
Performance, scalability & maintainability suffer.

Sources: Deadlines, legacy code, evolving hardware, lack of
refactoring.

Impact: Slows development, increases bugs, hinders innovation,
burns out maintainers.

Maintainer's Reality: Constant patching, frustration, struggling to
keep up.

Solution: Prioritize refactoring, testing, documentation, and code
reviews.

The Silent Drag: Technical Debt

1616

3. The Human Cost: The "Half-Baked Feature"
Trap
Problem: Experimental features pushed out for a
publication, then abandoned.
Impact: Maintainers are left to salvage/fix the code
with no recognition.
Lesson: Short-term incentives (publications) can
create long-term, uncredited maintenance burdens.

4. The Strategic Win: Offloading Debt via
Standardization
Strategy: Pushed Kokkos::View abstraction to the
C++ standard, resulting in std::mdspan (C++23).
Benefit: Shared the maintenance cost with the entire
C++ community.
Action: Back-ported mdspan to C++17 and refactored
Kokkos::View to use it.
Lesson: The ultimate debt reduction is making your
problem a shared, community-supported solution.

1. The Architectural Blocker: Exascale Backend
Crisis
Mission: Develop new backends (HIP/SYCL) for
Frontier & Aurora.
Debt: Rigid architecture with centralized preprocessor
directives.
Impact: Blocked incremental development; new
backends were untestable until 70% complete.

2. The Fix: Refactoring for Adaptability
Solution: Converted backend "choke points" into a
modular plugin system.
Enablement: Developed new incremental tests to
guide and validate backend development.
Lesson: Proactive refactoring is an investment in
future adaptability.

Technical Debt: Lessons from Kokkos

17

Actionable Strategy 1: Treat refactoring as a core
feature for every release cycle (e.g., dedicate 10% of
effort).

Actionable Strategy 2: Invest in robust, layered testing
to ensure refactoring doesn't break performance.

Actionable Strategy 3: Adopt modern C++ standards
to shed old, custom workarounds.

Mitigation Strategy: Refactoring as a Feature

Key Takeaway: Pay Down the Principal
Don't wait for a crisis to fix core issues. Proactive maintenance is a feature.

Technical debt is not always avoidable, but it must be managed.
It's a hidden cost that significantly impacts long-term sustainability.

18

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

Hyrum’s Law:
Implicit
Dependencies Bite

https://xkcd.com/1172/

19

“With a sufficient number of users of an
API, it does not matter what you promise
in the contract:

all observable behaviors of your system
will be depended on by somebody.”

Hyrum’s Law: Implicit Dependencies Bite

https://xkcd.com/1172/

20

The Problem in HPC: Users often rely on
undocumented implementation details for
performance tuning or subtle integration with other
libraries (e.g., a specific memory layout, a private
header file). Changing an internal implementation for
the better can break an ecosystem.

The Hidden Interface Of Your Software

2121

Hyrum’s Law: Lessons from Kokkos
The Price of Internal Change

The Daily Grind: Refactors Break the Ecosystem
Problem: Valid internal refactors routinely broke downstream code (especially Trilinos).
Impact: Forced reverts and created a "culture of fear" around necessary internal changes.

Cause: Our Ambiguous Contract
Trilinos Inheritance: Our history as a sub-package set a precedent for disregarding API boundaries.
Our Fault: We failed to clearly define public vs. private headers, leading users to include private files like
<Kokkos_View.hpp>.

Strategy 1: Building a Formal Contract
Action: Introduced "Backwards & Future Compatibility" guidelines.
The Rules: Forbade using internal symbols (e.g., Kokkos::Impl::, KOKKOS_IMPL_ macros).
The Process: Enforced a slow, painful deprecation process over multiple releases before final changes could be
made.

2222

Hyrum’s Law: Lessons from Kokkos
The Ultimate Test

The “View of Views” Saga
The Feature: Fixed a thread-safety issue for concurrent enqueuing.
The Collision: Broke code using "View of Views"—a pattern our programming guide explicitly discourages.
The Discovery: A wider call for feedback revealed the "illegal" pattern was pervasive across strategic
applications.

Strategy 2: Pragmatism & Adaptation
Diagnosis: We wrote a tool to detect semantic violations in older Kokkos versions.
Contingency: Added a "secret" runtime option to revert to the old, unsafe behavior (a temporary escape hatch).
Adaptation: Ultimately had to invent new View semantics to officially support the common use case.

Strategy 3: Knowing When to Rollback
Rolled back optimizations (e.g., unpromised fences) when the cost of change was too high for the ecosystem.
The Maintainer's Lesson: The API is what users actually depend on, regardless of your documentation.

23

Actionable Strategy 1: Clearly define public vs. private
interfaces (enforced via namespaces, header files, or
tooling).
Actionable Strategy 2: Institute a formal deprecation
policy with a fixed "shelf life" for features (e.g., two
major releases).
Actionable Strategy 3: Invest in integration tests with
key downstream projects to catch hidden breaks
before release.

Mitigation Strategy: Clear Boundaries & Deprecation

Key Takeaway: The Cost of Change
Every change has a cost. Minimize this cost by rigidly defining the contract and
providing a clear transition path.

24

The Path to Sustainable HPC Software

Grow the Bus (Decentralize knowledge).

Pay Down the Principal (Refactor proactively).

Define the Contract (Manage Hyrum's Law with clear
boundaries).

Sustainable software requires proactive stewardship, not
just heroic coding.

25

The End

Let's work together to build a future of sustainable, reliable, and
impactful HPC software!

Funding Acknowledgments:

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Next-Generation Scientific Software Technologies program, under
contract number DE-AC05-00OR22725 (ORNL).

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

	Default Section
	Slide 1: Sustainable HPC Software: A Maintainer's Perspective

	Intro
	Slide 2: Clarifying the Focus: What is “Software Sustainability”?
	Slide 3: What Does A Maintainer Do?
	Slide 4: The HPC Software Paradox
	Slide 5: Talk Roadmap

	Bus Factor
	Slide 6: My Perspective: The Kokkos Lens
	Slide 7: Bus Factor: How Vulnerable is Your Project?
	Slide 8: Managing Critical Vulnerabilities: The Bus Factor
	Slide 9: Analyze Your Contributor Dependency
	Slide 10: Elephant Factor
	Slide 11: Granularity in Bus Factor Analysis
	Slide 12: Bus Factor: Lessons from Kokkos
	Slide 13: Mitigation Strategy: Documentation & Process

	Technical Debt
	Slide 14: The Silent Drag: Technical Debt
	Slide 15: The Silent Drag: Technical Debt
	Slide 16: Technical Debt: Lessons from Kokkos
	Slide 17: Mitigation Strategy: Refactoring as a Feature

	Hyrum’s Law
	Slide 18: Hyrum’s Law: Implicit Dependencies Bite
	Slide 19: Hyrum’s Law: Implicit Dependencies Bite
	Slide 20: The Hidden Interface Of Your Software
	Slide 21: Hyrum’s Law: Lessons from Kokkos The Price of Internal Change
	Slide 22: Hyrum’s Law: Lessons from Kokkos The Ultimate Test
	Slide 23: Mitigation Strategy: Clear Boundaries & Deprecation

	Wrap Up
	Slide 24: The Path to Sustainable HPC Software
	Slide 25: The End

