
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Application of the OpenSSF Best
Practices Badge Program to
Scientific Software

SAND2023-04819O

Roscoe A. Bart let t , PhD (Sandia Nat ional Labs)
Yanfei Guo (Argonne Nat ional Laboratory)
Prat ik Nayak (Technical Univers i ty of Munich)

September 24, 2025

HPC Best Practices Webinar Series

OpenSSF Best Practices Badge Program: BSSW.io Article

2
https://bssw.io/items/openssf-best-practices-badge-program

https://bssw.io/items/openssf-best-practices-badge-program
https://bssw.io/items/openssf-best-practices-badge-program
https://bssw.io/items/openssf-best-practices-badge-program
https://bssw.io/items/openssf-best-practices-badge-program
https://bssw.io/items/openssf-best-practices-badge-program
https://bssw.io/items/openssf-best-practices-badge-program
https://bssw.io/items/openssf-best-practices-badge-program
https://bssw.io/items/openssf-best-practices-badge-program
https://bssw.io/items/openssf-best-practices-badge-program

Se cur it y Is s ue s in Op e n Source Soft w a re

3

How does software security impact
Computational Science & Engineering
(CSE) / High Performance Computing
(HPC) Communities?
• Incautious usage of software systems can

create problems for our institutions.
• Software installs can create vulnerabilities

on our systems and customer systems.
• Some of our CSE/HPC software may be

run in environments that can open up
security vulnerabilities (e.g., AI agents!).

• Workflows, pipelines, and containers
increasingly used for CSE/HPC bring with
them possible security vulnerabilities.

NOTE: OpenSSL Heartbleed bug was
exposed in 2014 and is still generating news
articles 11 years later!

Op e n Source Se cur it y Foun da t ion (Op e n SSF)

4

Open Source Security Foundation (OpenSSF)
• A Linux Foundation Project
• Cross-industry organization
• Bringing together the industries open source security initiatives &

individuals
• Vision: “… a future where participants in the open source ecosystem

use and share high quality software, with security handled proactively,
by default, and as a matter of course”

• Technical vision:
• Developers learn secure practices, guided by tools.
• Security policies created, distributed, enforced automatically.
• Security issues identified, flow back to chain for rapid

response.
• Community members provide info, notifications, flow forward

to users.

Source: https://openssf.org/about/

OpenSSF Members - Premier (22)
[Provide funding for OpenSSF]

https://openssf.org/about/
https://openssf.org/press-release/2021/10/13/open-source-security-foundation-raises-10-million-in-new-commitments-to-secure-software-supply-chains/

Op e n SSF Be s t Pra ct ice s Ba dge Progra m : Ove rvie w

5

• Set of best practices curated from open-source community that have specific actionable criteria which
require supporting evidence,

• Particularly strong focus on software security which addresses several U.S. Federal Government notices
on software secruty,

• Featureful "Badge App" site that enhances the display of each practice, expanded descriptions of the
practices, and fields to enter URL and text descriptions of the status of each practice in the project,

• Badge that can be displayed on a project's own hosting site to show that a project follows accepted best
practices,

• Learning tool for best practices for developers and projects,

• Roadmap for continual improvement for a project as it incrementally adopts more practices and improves
its scores in different areas,

• Standard index into the parts of the projects and how it handles different types of processes, and

• Website template and database implementation that can be forked and customized for more targeted
communities. => Has been utilized at Sandia National labs to create a customized site!

NOTE: Most of the OpenSSF best practices are applicable to all software,
not just security-critical software!

https://bssw.io/items/openssf-best-practices-badge-program#details
https://bssw.io/items/openssf-best-practices-badge-program#focus_on_security
https://bssw.io/items/openssf-best-practices-badge-program#badge_app
https://bssw.io/items/openssf-best-practices-badge-program#badge_display
https://bssw.io/items/openssf-best-practices-badge-program#badge_display
https://bssw.io/items/openssf-best-practices-badge-program#learning_tool
https://bssw.io/items/openssf-best-practices-badge-program#learning_tool
https://bssw.io/items/openssf-best-practices-badge-program#continuous_improvement
https://bssw.io/items/openssf-best-practices-badge-program#continuous_improvement
https://bssw.io/items/openssf-best-practices-badge-program#standard_project_index
https://bssw.io/items/openssf-best-practices-badge-program#standard_project_index
https://bssw.io/items/openssf-best-practices-badge-program#forking_badge_app_website
https://bssw.io/items/openssf-best-practices-badge-program#forking_badge_app_website

6

6

OpenSSF Best Practices
Badge Program Overview

Op e n SSF Be s t Pra ct ice s St ruct u re

7

The OpenSSF Best Practices are broken down and organized in several different ways:
• Required or optional practices:

• MUST: Required/not optional (unless 'N/A' is allowed)
• SHOULD: Required unless a strong argument against can be made
• SUGGESTED: Not required but suggested

• Three different badge levels:
• Passing: 43 MUST, 10 SHOULD, 14 SUGGESTED
• Silver: +44 MUST, +10 SHOULD, +1 SUGGESTED
• Gold: +21 MUST, +2 SHOULD

• Six different categories in each badge level:
• Basic
• Change Control
• Reporting
• Quality
• Security
• Analysis

• Each category broken down into subcategories

Passing
Basics
Basic project website content
• The project website MUST provide

information on how to: obtain, provide
feedback (as bug reports or enhancements),
and contribute to the software. [interact]

• The information on how to contribute
SHOULD include the requirements for
acceptable contributions (…). {Met
URL} [contribution_requirements]

NOTE: Each practice has a unique [short_link_name]

https://bestpractices.coreinfrastructure.org/en/criteria#0.interact
https://bestpractices.coreinfrastructure.org/en/criteria#0.contribution_requirements

Op e n SSF Be s t Pra ct ice s : Pa s s in g- Le ve l: Sa m p le s 1

8

Basics
Basic project website content
• The project website MUST succinctly describe what

the software does (what problem does it
solve?). [description_good]

• The project website MUST provide information on
how to: obtain, provide feedback (as bug reports or
enhancements), and contribute to the
software. [interact]

• The information on how to contribute MUST explain
the contribution process (e.g., are pull requests
used?) {Met URL} [contribution]

• The information on how to contribute SHOULD
include the requirements for acceptable
contributions (e.g., a reference to any required coding
standard). {Met URL} [contribution_requirements]

FLOSS license …
Documentation …
Other …

Change Control
Public version-controlled source repository
• The project MUST have a version-controlled source

repository that is publicly readable and has a
URL. [repo_public]

• The project's source repository MUST track what
changes were made, who made the changes, and
when the changes were made. [repo_track]

• To enable collaborative review, the project's source
repository MUST include interim versions for review
between releases; it MUST NOT include only final
releases. [repo_interim]

• It is SUGGESTED that common distributed version
control software be used (e.g., git) for the project's
source repository. [repo_distributed]

Unique version numbering …
Release notes …

Source: https://www.bestpractices.dev/en/criteria

https://bestpractices.coreinfrastructure.org/en/criteria#0.description_good
https://bestpractices.coreinfrastructure.org/en/criteria#0.interact
https://bestpractices.coreinfrastructure.org/en/criteria#0.contribution
https://bestpractices.coreinfrastructure.org/en/criteria#0.contribution_requirements
https://bestpractices.coreinfrastructure.org/en/criteria#0.repo_public
https://bestpractices.coreinfrastructure.org/en/criteria#0.repo_track
https://bestpractices.coreinfrastructure.org/en/criteria#0.repo_interim
https://bestpractices.coreinfrastructure.org/en/criteria#0.repo_distributed
https://www.bestpractices.dev/en/criteria

Op e n SSF Be s t Pra ct ice s : Pa s s in g- Le ve l: Sa m p le s 2

9

Reporting
Bug-reporting process
• The project MUST provide a process for users to

submit bug reports (e.g., using an issue tracker or a
mailing list). {Met URL} [report_process]

• The project SHOULD use an issue tracker for tracking
individual issues. [report_tracker]

• The project MUST acknowledge a majority of bug
reports submitted in the last 2-12 months (inclusive);
the response need not include a fix. [report_responses]

• The project SHOULD respond to a majority (>50%) of
enhancement requests in the last 2-12 months
(inclusive). [enhancement_responses]

• The project MUST have a publicly available archive for
reports and responses for later searching. {Met
URL} [report_archive]

Vulnerability report process
• The project MUST publish the process for reporting

vulnerabilities on the project site. {Met
URL} [vulnerability_report_process]

• …

Quality
Working build system
• If the software produced by the project requires

building for use, the project MUST provide a working
build system that can automatically rebuild the
software from source code. {N/A allowed} [build]

• …

Automated test suite
• The project MUST use at least one automated test

suite that is publicly released as FLOSS <…> [test]

New functionality testing
• The project MUST have a general policy (formal or

not) that as major new functionality is added to the
software produced by the project, tests of that
functionality should be added to an automated test
suite. [test_policy]

• …
Warning flags …

https://bestpractices.coreinfrastructure.org/en/criteria#0.report_process
https://bestpractices.coreinfrastructure.org/en/criteria#0.report_tracker
https://bestpractices.coreinfrastructure.org/en/criteria#0.report_responses
https://bestpractices.coreinfrastructure.org/en/criteria#0.enhancement_responses
https://bestpractices.coreinfrastructure.org/en/criteria#0.report_archive
https://bestpractices.coreinfrastructure.org/en/criteria#0.vulnerability_report_process
https://bestpractices.coreinfrastructure.org/en/criteria#0.build
https://bestpractices.coreinfrastructure.org/en/criteria?details=true&rationale=true#0.test
https://bestpractices.coreinfrastructure.org/en/criteria#0.test_policy

Op e n SSF Be s t Pra ct ice s : Pa s s in g- Le ve l: Sa m p le s 3

10

Security
Secure development knowledge
• The project MUST have at least one primary

developer who knows how to design secure
software. (See ‘details’ for the exact
requirements.) [know_secure_design]

• At least one of the project's primary developers
MUST know of common kinds of errors that
lead to vulnerabilities in this kind of software,
as well as at least one method to counter or
mitigate each of them. [know_common_errors]

Use basic good cryptographic practices …
Secured delivery against man-in-the-middle (MITM)
attacks …
Publicly known vulnerabilities fixed …
Other security issues …

Analysis
Static code analysis
• At least one static code analysis tool (beyond

compiler warnings and "safe" language modes) MUST
be applied to any proposed major production release
of the software before its release, … {N/A
justification} {Met justification} [static_analysis]

• It is SUGGESTED that at least one of the static analysis
tools used for the static_analysis criterion include
rules or approaches to look for common
vulnerabilities in the analyzed language or
environment. {N/A
allowed} [static_analysis_common_vulnerabilities]

• All medium and higher severity exploitable
vulnerabilities discovered with static code analysis
MUST be fixed in a timely way after they are
confirmed. {N/A allowed} [static_analysis_fixed]

• It is SUGGESTED that static source code analysis
occur on every commit or at least daily. {N/A
allowed} [static_analysis_often]

Dynamic code analysis …
NOTE: Most of the OpenSSF best practices are
applicable to all software!

https://bestpractices.coreinfrastructure.org/en/criteria#0.know_secure_design
https://bestpractices.coreinfrastructure.org/en/criteria#0.know_common_errors
https://bestpractices.coreinfrastructure.org/en/criteria#0.static_analysis
https://bestpractices.coreinfrastructure.org/en/criteria#0.static_analysis_common_vulnerabilities
https://bestpractices.coreinfrastructure.org/en/criteria#0.static_analysis_fixed
https://bestpractices.coreinfrastructure.org/en/criteria#0.static_analysis_often

Op e n SSF Be s t Pra ct ice s : Cr it e r ia St a t is t ics

11

Level Total
active

MUST SHOULD SUGGESTED Security
specific

Allow N/A Met
justification or
URL required

Require
URL

Passing 67 43 10 14 16 27 1 8
Silver +55 +44 +10 1 +18 40 38 17
Gold +23 +21 +2 0 +5 9 13 9

Table: OpenSSF Best Practice Breakdown

Notes/Observations:

• Some practices are relisted in higher levels going from SUGGESTED to SHOULD or SHOULD to REQUIRED

• Example SHOULD … [bus_factor] at Silver-level is relisted as MUST … [bus_factor] at Gold-level

• Most of the practices are NOT specific to security!

• Also, most of the security-specific practices are “N/A” or are easily met for most CSE/HPC software.

12

12

OpenSSF Best Practices
“Badge App” Site

Op e n SSF Be s t Pra ct ice s : “Ba dge Ap p ” Sit e Ove rvie w

13Source: https://www.bestpractices.dev/en/projects

Some Projects
Earning Badges:

https://www.bestpractices.dev/en/projects

Op e n SSF Be s t Pra ct ice s : “Ba dge Ap p ” Sit e : Go ld - Le ve l Pro je ct s

14
Source: https://www.bestpractices.dev/en/projects?gteq=300

https://www.bestpractices.dev/en/projects?gteq=300

Op e n SSF Be s t Pra ct ice s : Grow t h in a dop t ion

15

• Number of registered projects growing steadily
• Number of projects registering is continuing to accelerate!
• Conclusion: Well accepted and adopted badge program and site!

Source: https://www.bestpractices.dev/en/project_stats

https://www.bestpractices.dev/en/project_stats

Op e n SSF Be s t Pra ct ice s : Ba dge le ve l a n d a dop t ion s t a t s

16

Of 8908 total registered projects (as of 9/9/2025)
• 1031 Passing-level projects: 11%
• 116 Silver-level projects: 1.3%
• 56 Gold-level projects: 0.6%

SIDENOTE: A number of the listed projects are not official entries for those projects
Source: https://www.bestpractices.dev/en/projects

Source: https://www.bestpractices.dev/en/project_stats

https://www.bestpractices.dev/en/projects
https://www.bestpractices.dev/en/project_stats

Op e n SSF Be s t Pra ct ice s : Pro je ct Pa ge

17
Source: https://www.bestpractices.dev/en/projects/4839#

https://www.bestpractices.dev/en/projects/4839

Op e n SSF Be s t Pra ct ice s : Pro je ct Pra ct ice En t ry

18
Source: https://www.bestpractices.dev/en/projects/4839#changecontrol

…

https://www.bestpractices.dev/en/projects/4839#changecontrol

Op e n SSF Be s t Pra ct ice s : Pro je ct Ba dge Dis p la y

19
Source: https://github.com/TriBITSPub/TriBITS#readme

https://github.com/TriBITSPub/TriBITS#readme

20

20

Other Benefits of the
OpenSSF Best Practices

Badge Program

Op e n SSF Be s t Pra ct ice s a s a Le a rn in g Tool

21

• Listing of practices includes “additional information”

• https://www.bestpractices.dev/en/criteria?details=true&rationale=true

• Each practice on Badge App Project page has a “Show details” button and there is a “Show all details
button” at the top of the page.

• https://www.bestpractices.dev/en/projects/4839#all

• Reading though all 129 best practices with detail (and clicking on the links for more info) can take
more than ½ a day (or much longer depending on the level of familiarity with each practices).

https://www.bestpractices.dev/en/criteria?details=true&rationale=true
https://www.bestpractices.dev/en/criteria?details=true&rationale=true
https://www.bestpractices.dev/en/projects/4839#all
https://www.bestpractices.dev/en/projects/4839#all

Op e n SSF Be s t Pra ct ice s : Pr a ct ice s w it h a dd it ion a l in fo rm a t ion

22
Source: https://www.bestpractices.dev/en/criteria?details=true&rationale=true

FLOSS license
• The software produced by the project MUST be released as FLOSS. [floss_license]

Details:
FLOSS is software released in a way that meets the Open Source Definition or Free Software Definition.
Examples of such licenses include the CC0, MIT, BSD 2-clause, BSD 3-clause revised, Apache 2.0, Lesser GNU
General Public License (LGPL), and the GNU General Public License (GPL). For our purposes, this means that the
license MUST be:

• an approved license by the Open Source Initiative (OSI), or
• a free license as approved by the Free Software Foundation (FSF), or
• a free license acceptable to Debian main, or
• a "good" license according to Fedora.

The software MAY also be licensed other ways (e.g., "GPLv2 or proprietary" is acceptable).

Rationale:
These criteria are designed for FLOSS projects, so we need to ensure that they're only used where they apply.
Some projects may be mistakenly considered FLOSS even though they are not (e.g., they might not have any
license, in which case the defaults of the country's legal system apply, or they might use a non-FLOSS license).
We've added "produced by the project" as a clarification - many projects use non-FLOSS software/services in the
process of creating software, or depend on them to run, and that is allowed.

https://www.bestpractices.dev/en/criteria?details=true&rationale=true
https://bestpractices.coreinfrastructure.org/en/criteria?details=true&rationale=true#0.floss_license
https://opensource.org/osd-annotated
https://www.gnu.org/philosophy/free-sw.en.html
https://creativecommons.org/publicdomain/zero/1.0/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/lgpl-license
https://opensource.org/licenses/lgpl-license
https://opensource.org/licenses/gpl-license
https://opensource.org/licenses
https://opensource.org/licenses
https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/licenses/license-list.html
https://www.debian.org/legal/licenses/
https://www.debian.org/legal/licenses/
https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing
https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing

Op e n SSF Be s t Pra ct ice s : Ba dge Ap p Pro je ct Pa ge “Sh ow De t a ils ”

23
Source: https://www.bestpractices.dev/en/projects/4839#basics

https://www.bestpractices.dev/en/projects/4839#basics

Op e n SSF Be s t Pra ct ice s a s Con t in uou s Proce s s Im p rove m e n t t oo l

24

• Badge App Project page Show unmet criteria mode (i.e. “Expand panels” and “Hide met & N/A”) :
• https://www.bestpractices.dev/en/projects/4839#all

• Badge App sends out periodic email reminders about the status for your projects and where to
look for improvements.

https://www.bestpractices.dev/en/projects/4839#all
https://www.bestpractices.dev/en/projects/4839#all

Op e n SSF Be s t Pra ct ice s Pro je ct Pa ge : Sh ow in g un m e t cr it e r ia

25

…

Source: https://www.bestpractices.dev/en/projects/4839#all

https://bestpractices.coreinfrastructure.org/en/projects/4839#all

Op e n SSF Be s t Pra ct ice s Pro je ct Pa ge : Sh ow in g un m e t cr it e r ia

26

Op e n SSF Be s t Pra ct ice s Ba dge Ap p : St a n da rd In de x in t o p ro je ct s

27

• Badge App Project Page for a given project provides a standard list of practices and make it
easy to find how a given project addresses various issues and how to access those.

• Example: How to report an issue for the project?
• [report_process] Passing-level, Reporting, Bug reporting process

• Example: Documentation of the internal implementation?
• [documentation_architecture] Silver-level, Basics, Documentation

https://bestpractices.coreinfrastructure.org/en/criteria?details=true&rationale=true#0.report_process
https://bestpractices.coreinfrastructure.org/en/criteria?details=true&rationale=true#1.documentation_architecture

28

28

Software Security Practices

Op e n SSF Be s t Pra ct ice s : Op e n SSL (He a r t b le e d bug)

29
Source: https://en.wikipedia.org/wiki/Heartbleed

NOTE: OpenSSL Heartbleed bug was exposed and fixed in 2014 and was only 63% of a passing
OpenSSF best practices badge!
NOTE: Even today, OpenSSL only achieves a passing badge!

Source: https://www.bestpractices.dev/en/projects?q=openssl

https://en.wikipedia.org/wiki/Heartbleed
https://bestpractices.coreinfrastructure.org/en/projects?q=openssl

Op e n SSF Be s t Pra ct ice s : Se cur it y Focus ?

30

Software Security Practices:
• 16 of 67 Passing-level practices (9 of 16 allow N/A)
• +18 of +55 Silver-level practices (11 of 18 allow N/A)
• +5 of +23 Gold-level practices (3 of 5 allow N/A)

Until recently, software security is barely mentioned in most software engineering books:
Classic Example: "Code Complete: 2nd Edition“, 800+ pages, 2004: Exactly one paragraph is devoted
to the area of software security in section 3.5 "Architecture Prerequisite":

The architecture should describe the approach to design level and code level security. If a thread model
has not previously been built, it should be built at architecture time. Coding guidelines should be
developed with security implications in mind, including approaches to handling buffers, rules for handling
untrusted data (data input from users, cookies, configuration data, and other external interfaces),
encryption, level of detail contained in error messages, protected secrete data that's in memory, and other
issues.

More Recent Example: “The Pragmatic Programmer: 20th Anniversary Edition”, 300+ pages, 2020:
Devotes 7 pages to software security in Topic 42 “Stay Safe Out There”.

 Awareness and visibility of software security is increasing => Bigger issue due to AI Agents!

Op e n SSF Be s t Pra ct ice s : Th e Mos t Diff icu lt Pa s s in g- le ve l It e m s ?

31

Passing-level
Security
Secure development knowledge

• The project MUST have at least one primary developer who knows how to design secure software.
(See ‘details’ for the exact requirements.) [know_secure_design]

• At least one of the project's primary developers MUST know of common kinds of errors that lead to
vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of
them. [know_common_errors]

What does it mean to “knows how to design secure software” and “know of common kinds of
errors that lead to vulnerabilities in this kind of software”?

NOTE: These are not even practices!

=> These are asking the question “Do you know what you are doing?”

https://bestpractices.coreinfrastructure.org/en/criteria#0.know_secure_design
https://bestpractices.coreinfrastructure.org/en/criteria#0.know_common_errors

Op e n SSF Be s t Pra ct ice s : Kn ow s e cure de s ign ?

32

Security
Secure development knowledge
• The project MUST have at least one primary developer who knows how to design secure software. (See ‘details’ for

the exact requirements.) [know_secure_design]

Details:
This requires understanding the following design principles, including the 8 principles from Saltzer and Schroeder:

• economy of mechanism (<…>), fail-safe defaults (<…>), complete mediation (<…>), open design (<…>), separation
of privilege (<…>), least privilege (<…>), least common mechanism (<…>), psychological acceptability (<…>), limited
attack surface (<…>), input validation with allowlists (<…>)

A "primary developer" in a project is anyone who is familiar with the project's code base, <….> If there is only one
developer, that individual is the primary developer. Many books and courses are available to help you understand how
to develop more secure software and discuss design. For example, the Secure Software Development
Fundamentals course is a free set of three courses that explain how to develop more secure software (it's free if you
audit it; for an extra fee you can earn a certificate to prove you learned the material).

What is needed to check this box? OpenSSF: Concise Guide for Developing More Secure Software:
• Learn about secure software development. Take, e.g., the free OpenSSF course or the hands-

on Security Knowledge Framework course. SAFECode’s Fundamental Practices for Secure Software
Development provides a helpful summary.

• Free OpenSSF course : 18 hours every 2 years (least time consuming option?)

https://bestpractices.coreinfrastructure.org/en/criteria?details=true&rationale=true#0.know_secure_design
https://web.mit.edu/Saltzer/www/publications/protection/
https://web.mit.edu/Saltzer/www/publications/protection/
https://openssf.org/edx-courses/
https://openssf.org/edx-courses/
https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Developing-More-Secure-Software.md#readme
https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Developing-More-Secure-Software.md#readme
https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Developing-More-Secure-Software.md#readme
https://openssf.org/training/courses/
https://www.securityknowledgeframework.org/
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://openssf.org/training/courses/
https://openssf.org/training/courses/

Op e n SSF Be s t Pra ct ice s : Kn ow com m on kin ds o f e r ro r s ?

33

Security
Secure development knowledge

• At least one of the project's primary developers MUST know of common kinds of errors that lead to
vulnerabilities in this kind of software, as well as at least one method to counter or mitigate each of
them. [know_common_errors]

Details:

• Examples (depending on the type of software) include SQL injection, OS injection, classic buffer
overflow, cross-site scripting, missing authentication, and missing authorization. See the CWE/SANS
top 25 or OWASP Top 10 for commonly used lists. Many books and courses are available to help you
understand how to develop more secure software and discuss common implementation errors that
lead to vulnerabilities. For example, the Secure Software Development Fundamentals course is a free
set of three courses that explain how to develop more secure software (it's free if you audit it; for an
extra fee you can earn a certificate to prove you learned the material).

https://bestpractices.coreinfrastructure.org/en/criteria?details=true&rationale=true#0.know_common_errors
https://cwe.mitre.org/top25/
https://cwe.mitre.org/top25/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://openssf.org/edx-courses/

Com m on Se cur it y Vuln e ra b ilit ie s ? 20 24 CWE Top 25

34

• 5 of the top 25 are very common in all C/C++/Fortran/CUDA/HIP/... CSE/HPC codes!
• Many of these are major causes of software bugs impacting software correctness in CSE/HPC codes

Source: https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html#top25list

Security vulnerabilities related to CSE/HPC Software (11 of 25)

Conclusion: Software correctness & quality and software security are best friends

Rank ID Name Score CVEs in
KEV

Rank Change
vs. 2023

2 CWE-787 Out-of-bounds Write 45.20 18 -1
6 CWE-125 Out-of-bounds Read 11.42 3 +1
8 CWE-416 Use After Free 10.19 5 -4

11 CWE-94 Improper Control of Generation of Code ('Code Injection') 7.13 7 +12

12 CWE-20 Improper Input Validation 6.78 1 -6
16 CWE-502 Deserialization of Untrusted Data 5.07 5 -1

20 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 3.69 2 -3

21 CWE-476 NULL Pointer Dereference 3.58 0 -9
23 CWE-190 Integer Overflow or Wraparound 3.37 3 -9
24 CWE-400 Uncontrolled Resource Consumption 3.23 0 +13

https://cwe.mitre.org/top25/
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html#top25list
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/400.html

Ap p lica t ion of t h e Op e n SSF Be s t Pra ct ice s Ba dge Progra m
t o Scie n t if ic Soft w a re : Ch a lle n ge s ?

35

Are the burdens of the Security Criteria too much for CSE/HPC software?
• Most security-related criteria can be marked “N.A.” (e.g., [crypto_published])

• What about “The project MUST have at least one primary developer who knows how
to design secure software” [know_secure_design]?
⇒ We could define different categories of CSE/HPC software and software development

and minimal training criteria for each level:
⇒ Level 1: Basic CSE/HPC Numerical Software => 4 hours, every 5 years?
⇒ Level 2: CSE/HPC DevOps Software => 10 hours, every 3 years?
⇒ Level 3: System Software/User Management => Free OpenSSF course : 18 hours,

every 2 years?

https://bestpractices.coreinfrastructure.org/en/criteria?details=true&rationale=true#0.know_secure_design
https://openssf.org/training/courses/

36

36

Ginkgo
OpenSSF Best Practices

Badge Program Experience

37

37

38

38

39

39

40

40

41

41

42

42

43

43

44

44

45

45

46

46

47

47

48

48

49

49

MPICH
OpenSSF Best Practices

Badge Program Experience

50

50

51

51

52

52

53

53

54

54

55

55

56

56

57

57

58

58

59

59

Op e n SSF Be s t Pra ct ice s Ba dge Progra m : Sum m a ry

60

• OpenSSF Best Practices provides actionable collection of open source communities best
practices.

• OpenSSF Best Practices Badge App site codifies best practices and provides blanks for
projects to fill in.

• Badge can be displayed on project's hosting site when a given badge level is earned (or
showing progress towards a badge).

• Badge App site contains features to identify areas of improvement.
• Badge App site can send out regular reminders to keep making progress.
• Badge App site provide a ready implementation foundation for a customized best

practices sites. => Has been utilized at Sandia National labs to create a customized site!
• OpenSSF Best Practices Badge Program elevates security to a first-level concern for

everyone developing software? (What the minimum sufficient level of knowledge?)

Create an OpenSSF Best Practices entry for one of your software projects?
https://www.bestpractices.dev/en/projects

https://bestpractices.coreinfrastructure.org/en/projects

61

61

Comments or Questions?

	Application of the OpenSSF Best Practices Badge Program to Scientific Software
	OpenSSF Best Practices Badge Program: BSSW.io Article
	Security Issues in Open Source Software
	Open Source Security Foundation (OpenSSF)
	OpenSSF Best Practices Badge Program: Overview
	Slide Number 6
	OpenSSF Best Practices Structure
	OpenSSF Best Practices: Passing-Level: Samples 1
	OpenSSF Best Practices: Passing-Level: Samples 2
	OpenSSF Best Practices: Passing-Level: Samples 3
	OpenSSF Best Practices: Criteria Statistics
	Slide Number 12
	OpenSSF Best Practices: “Badge App” Site Overview
	OpenSSF Best Practices: “Badge App” Site: Gold-Level Projects
	OpenSSF Best Practices: Growth in adoption
	OpenSSF Best Practices: Badge level and adoption stats
	OpenSSF Best Practices: Project Page
	OpenSSF Best Practices: Project Practice Entry
	OpenSSF Best Practices: Project Badge Display
	Slide Number 20
	OpenSSF Best Practices as a Learning Tool
	OpenSSF Best Practices: Practices with additional information
	OpenSSF Best Practices: Badge App Project Page “Show Details”
	OpenSSF Best Practices as Continuous Process Improvement tool
	OpenSSF Best Practices Project Page: Showing unmet criteria
	OpenSSF Best Practices Project Page: Showing unmet criteria
	OpenSSF Best Practices Badge App: Standard Index into projects
	Slide Number 28
	OpenSSF Best Practices: OpenSSL (Heartbleed bug)
	OpenSSF Best Practices: Security Focus?
	OpenSSF Best Practices: The Most Difficult Passing-level Items?
	OpenSSF Best Practices: Know secure design?
	OpenSSF Best Practices: Know common kinds of errors?
	Common Security Vulnerabilities? 2024 CWE Top 25
	Application of the OpenSSF Best Practices Badge Program to Scientific Software: Challenges?
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	OpenSSF Best Practices Badge Program: Summary
	Slide Number 61

