
HPC-BP Webinar Q&A 

Application of the OpenSSF Best Practices Badge 
Program to Scientific Software 
Date: 24 September 2025 
Presented by: Roscoe A. Bartlett (Sandia National Laboratories), Yanfei Guo (Argonne National 
Laboratory), and Pratik Nayak (Technical University of Munich) 
 
(The slides are available via the link in the page's sidebar.) 

 
 
Q: Is the reminder thing [from the OpsenSSF badging program website] new?  I've never gotten 
one 
 
A: Looking at the code that implements email notifications, it seems that it sends out 
notifications only to the badge app project owner, and only if your badge app account has 
notifications enabled, and the project does not yet have a passing badge, and it has been more 
than 60 days since the the edit to the project or the last reminder email was sent out. 
 
Q: For the [know_secure_design] criteria, are there specific requirements for the courses that 
satisfy, or are they just meant to be examples, representing the level of knowledge expected? 
 
A: Reading over know_secure_design it says “requires understanding the following design 
principles, including the 8 principles from Saltzer and Schroeder”.  But what does it mean to “know” 
these things?  It mentions “Many books and courses are available to help you understand how to 
develop more secure software and discuss design” and it gives, as the only specific example, 
Secure Software Development Fundamentals.  That course says it takes 14-18-hours to complete 
and must be retaken every 2 years to maintain certification.  I think this is left somewhat 
ambiguous on purpose, as it allows different projects and communities to define this for 
themselves.  But it does define a high bar in general.  I think we, as an HPC community, should 
define different levels of knowledge and training for our projects to “know secure design” for our 
types of software. That is likely the responsible thing to do to provide some uniformity between 
projects and some confidence to our stakeholders. 
 

 
 
A relevant discussion thread from the Zoom chat, lightly edited. Chat participants denoted 
Participant A, B, C, D.  Speaker comments added later denoted by their names.. 
 
Participant A: The OpenSSF course... is not well suited to scientific software development. 

https://ideas-productivity.org/events/hpcbp-093-openssf
https://ideas-productivity.org/events/hpcbp-093-openssf
https://github.com/coreinfrastructure/best-practices-badge/blob/main/app/models/project.rb#L484
https://www.bestpractices.dev/en/criteria/0?details=true&rationale=true#0.know_secure_design
https://web.mit.edu/Saltzer/www/publications/protection/
https://openssf.org/edx-courses/


 
Participant B: Why not? 
 
Participant A: It focuses a lot on security for web-facing software. I talked to the OpenSSF 
people about trying to work with us to develop a course for "unix user-land software" and they 
were not interested at all. 
 
Ross Bartlett: But nearly all of the security items that don’t apply to your project can be marked 
as “N.A.”  So what is the problem other than the requirement to “know secure design”?  (And for 
that, we need to define what that means for different levels of projects in our space.) 
 
Participant C: The NSF Trusted CI center has done a fair amount of training, and although that 
also leans towards web-facing and other situations which are "real" security concerns, they have 
a better understanding of "scientific" software. 
 
Participant B: I think scientific software may increasingly need to do web- (or other 
connection-facing) stuff… and listening on ports, securing connections, etc. is where a lot of the 
issues are for securing software.  What would your user land-only security course cover?  If it’s 
supplemental that could be helpful, but I think it’s hard to say that scientific software developers 
shouldn’t be aware of “web” vulnerabilities — even the CI we use, and internal services at HPC 
centers like Jupyter notebooks, use REST APIs and listen on ports. We’ve had 
unknowledgeable scientific software developers introduce security issues with their github 
actions that could have allowed their projects to be compromised. 
 
Ross Bartlett: Exactly.  If everyone was just writing and running numerical software on their 
local machine behind a firewall, security would not be much of a concern.  But that is no longer 
the case (and has not been so for many years). 
 
Participant B: This may be off base but I worry about scientific software constantly deeming 
itself "special".  We use web applications in scientific software, and not all scientific software is 
"unix user-land software", nor is that a sufficiently narrow domain to cover the threat vectors 
we're likely to face.  Scientific software increasingly relies on "mainstream" software and 
shouldn't rule out threats because they think their environment will always look like it does 
today. 
 
Ross Bartlett: Agreed 
 
Participant A: Except the OpenSSF course doesn't really cover any of that stuff either. 
 
Participant B: The other major vector I suspect isn’t fully addressed here is software supply 
chain… which is even harder :) 
 
Participant D:  Yes, but only by paying more people (or trusting ai curated feedstock). The 
comment about docker made me twitch.. right now most people absolutely don't vet what comes 



in with their containers, and supply chain is exactly that problem. Dataex from a container used 
to be thought difficult but is now eminently feasible. Github has just upgraded to deal with the 
current node fiasco, but people are still not convinced. I use a hardware crypto cert for software 
signing .. some people think that may be the only way. 
 


	Application of the OpenSSF Best Practices Badge Program to Scientific Software 

