Using Generative Al for Coding Tasks In
Scientific Software

ANSHU DUBEY & AKASH DHRUV

Mathematics and Computer Science,
Argonne National Laboratory,
Lemont, IL

JULY 9, 2025

WEBINAR SERIES BEST PRACTICES FOR HPC SOFTWARE
DEVELOPERS

° few) U.S. DEPARTMENT OF Ofﬁce of
Argonne = ENERGY | science

Acknowledgements

O This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced
Scientific Computing Research (ASCR), under the SciDAC Projects RAPIDS, Neucol, and ENAF

O This work was done in the Mathematics and Computer Science Division at Argonne National
Laboratory

AAAAAAAAAAAAAAAAAA

Motivation

Every code related task involves some tedium

OdOne would ideally like an assistant who handles all the tedious tasks

ALLMs are supposedly such assistants
QMany claims about increased productivity in software development

OWe wanted to explore the use of LLMs in scientific code development in two
scenarios

QOne is more for fun, and therefore optional
Q The other was nothing but tedium, so any assistance would help

QThis presentation is about two use cases
ONew code for a new communication algorithm
QCode translation of a legacy Fortran code to C++

QWe share our experience and observations

3

AAAAAAAAAAAAAAAAAA

Use-case 1 — Developing New Code

O Massive particles for N-body methods used in astrophysics

a The code has both mesh and particles
Qln parallel codes mesh is divided into blocks that are distributed among

processors
A Particles carry mass, mesh carries density

A Particles deposit density onto the mesh

d Mesh computes gravitational potential, forces and acceleration

O Forces and acceleration are conveyed back to particles who move to a
new position

a Cycle repeats

O The deposition of mass from a particle as density into the mesh
covers cells adjacent to the one where the particles is located

AAAAAAAAAAAAAAAAAA

Use-case 1 — Developing New Code

O Massive particles for N-body methods used in astrophysics

a The code has both mesh and particles
Qln parallel codes mesh is divided into blocks that are distributed among

processors
A Particles carry mass, mesh carries density

A Particles deposit density onto the mesh

d Mesh computes gravitational potential, forces and acceleration

O Forces and acceleration are conveyed back to particles who move to a

new position
A Cycle repeats

O The deposition of mass from a particle as density into the mesh ®

covers cells adjacent to the one where the particles is located

O Need for communication occurs when a particle is occupying a cell
on the boundary of a block

AAAAAAAAAAAAAAAAAA

Communication Algorithm

O Commonly used method is to use halo cells during
deposition and then do a reverse halo filling

0 Works fine with Uniformly discretized mesh

AAAAAAAAAAAAAAAAAA

Communication Algorithm

——————

O Commonly used method is to use halo cells during " .

deposition and then do a reverse halo filling

0 Works fine with Uniformly discretized mesh

d More complicated when there is Adaptive
Mesh Refinement (AMR)

Q Halo filling is expensive because it is not
necessarily nearest neighbor communication

Q To avoid spurious forces on the refined side
deposition needs to occur on two cells along
each dimension

AAAAAAAAAAAAAAAAAA

Communication Algorithm

O Commonly used method is to use halo cells during T
deposition and then do a reverse halo filling ! :

0 Works fine with Uniformly discretized mesh

o
Two cells on the
& finer side
///7, I !
rvzd]
- //I
@ 0 More complicated when there is Adaptive

Mesh Refinement (AMR)

Q Halo filling is expensive because it is not
necessarily nearest neighbor communication

Q To avoid spurious forces on the refined side
deposition needs to occur on two cells along
each dimension

AAAAAAAAAAAAAAAAAA

New Communication Algorithm

dMake virtual copies of the particle

0 Send virtual copies instead of filled halo cells

O Deposit locally

AAAAAAAAAAAAAAAAAA

New Communication Algorithm

dMake virtual copies of the particle

0 Send virtual copies instead of filled halo cells Ole

O Deposit locally

d Additional information is needed at physical
boundaries

10 Argon ne3

AAAAAAAAAAAAAAAAAA

New Communication Algorithm

dMake virtual copies of the particle

0 Send virtual copies instead of filled halo cells

O Deposit locally

Outflow physical

boundary no contribution to potential

11

d Additional information is needed physical

boundaries

0 Some boundary conditions may obviate the

need for virtual particles

AAAAAAAAAAAAAAAAAA

New Communication Algorithm

dMake virtual copies of the particle

0 Send virtual copies instead of filled halo cells

O Deposit locally

Outflow physical

boundary no contribution to potential

Periodic

x/ boundary
O particles

end up

elsewhere

12

d Additional information is needed physical

boundaries

0 Some boundary conditions may obviate the

need for virtual particles

dPeriodic boundary conditions change the

destination of the virtual particles

AAAAAAAAAAAAAAAAAA

New Communication Algorithm

13

A Additional information is needed for AMR
Q Is the particle close to a fine-coarse boundary

Q If so where does it deposit on two cells instead of
one

Q | want LLMs to generate code for me
O And | want to do test-driven development
O Everyone knows you can’t assume correctly
generated code

O So | need to break down the algorithm into smaller,
testable steps

O And then | want to see if | can get LLM to also generate
the test for me

AAAAAAAAAAAAAAAAAA

New Communication Algorithm

A Additional information is needed for AMR
Q Is the particle close to a fine-coarse boundary

Q If so where does it deposit on two cells instead of
one

oo

O I want LLMs to generate code for me
O And | want to do test-driven development
U Everyone knows you can’t assume correctly
generated code

EE

0 So | need to break down the algorithm into smaller,
testable steps

O And then | want to see if | can get LLM to also generate
the test for me.

This development is for Flash-X, a well-established code, which means | can make assumptions about available
utilities. But | also need to figure out how to fake those utilities for the purpose of testing the generated code

14 Argonne°

AAAAAAAAAAAAAAAAAA

Development and Testing Methodolgy

O Set up the testing environment
O Define constants that exist in the code
O Create a uniformly discretized mesh with easy to inspect

numbers
O Create simplified versions of the utilities available in the
code

O For the purpose of testing overall | specified a uniform
grid with 4x4 blocks for 2D and 473 blocks for 3D, blocks
have 8 cells along each dimension, and physical size
being 0.0-64.0 along each dimension

Qal have a copy of the mesh on paper, and | manually
inspect the output of tests and verify against my paper
setup.

15

AAAAAAAAAAAAAAAAAA

Development and Testing Methodolgy

O Set up the testing environment it M52
O Define constants that exist in the code ’ i
O Create a uniformly discretized mesh with easy to inspect

numbers
O Create simplified versions of the utilities available in the
code

O For the purpose of testing overall | specified a uniform
grid with 4x4 blocks for 2D and 473 blocks for 3D, blocks
have 8 cells along each dimension, and physical size
being 0.0-64.0 along each dimension

Qal have a copy of the mesh on paper, and | manually
inspect the output of tests and verify against my paper
setup.

16 Argonne°

AAAAAAAAAAAAAAAAAA

View of the working folder

"

h

constants.h

190

Grid_getBlkinfo.F90

700

Grid_data.F90

90

gr_createMirrors.F90

MAKE

Makefile

h

simulation.h

17

190

ar_ptApplyBC.F90

=R

Prompts_VP.txt

gr_inside_box.o

190

gr_ptPreSort.FO0

f90

gr_inside_box.F90

v

gr_xyzToBlock.F90

A All the routines with a check
mark exist in the main code

O Here simpler version for
testing are generated by Al

O The test is also generated
by Al

AAAAAAAAAAAAAAAAAA

Prompt Example — Mesh generation

Grid_data Module
integer gr_blkCount
integer gr_domainBC sized as (LOW:HIGH, MDIM) storing the boundary conditions as
defined before
real gr_globalDomain(LOW:HIGH,MDIM) storing the bounds of the global domain size
real gr_blockBound(LOW:HIGH,MDIM,gr_blkCount)

Prompt for creating the mesh — constants and variables are already known to the LLM

Write a routine gr_createDomain that creates a mesh. It prompts the user to specify the dimensions.
If the returned value is 2, then it builds mesh of size 642, if it is 3 it builds a mesh of size 64"3. The
mesh is to be divided into blocks where the size of the blocks is 1672 for a 2D mesh and 16”3 for a 3D
mesh gr_blkCount is the total number of blocks created blocks are assumed to be numbered in a
lexicographic order starting from lower left end of the domain to upper right hand. physical size of the
domain is 0.0 to 64.0 along each dimension

initialize gr_globalDomain with the global domain size
assign the number of blocks to gr_blkCount, allocate gr_blockBound array as defined

initialize it with block bounds for each of the created blocks 3
18 Argonne

AAAAAAAAAAAAAAAAAA

Adding Utilities and Testing Them

Prompts for faking the utilities
O Now write a program that will create this domain and also create a makefille

O Next write a routine gr_xyzToBlock which takes coordinates of a point as input and returns the

blocklID of the block on which the point lies. If the point lies outside of the global domain it returns -1
for blockID

O modify main.f90 so that it repeatedly prompts the user for a coordinate, it then prints its blockID and
the boundbox for the block. It exits the loop with returned value of blockID is -1

O modify gr_createDomain to also initialize gr_ domainBC, which contains boundary conditions. Along
|AXIS boundaries are periodic, along JAXIS they are OUTFLOW and if the mesh is 3D then along
KAXIS they are REFLECTIVE

QA Now write a stand-alone subroutine that takes blockID as input and returns the bound box in a real
array bbox(LOW:HIGH,MDIM) and the delta -- the physical size of the cell in real array(MDIM).
delta(KAXIS) is set to 0 for a 2D mesh

19 Argonne3

AAAAAAAAAAAAAAAAAA

Adding Utilities and Testing Them

Prompts f
O Now writ

O Next wrif
blockID (
for block

O modify

the bou

At each of these prompts main.F90
was modified to exercise the new
functionality and Makefile was
modified to add new files. All done
with LLM.

makefille

pint as input and returns the
of the global domain it returns -1

nate, it then prints its blocklID and

lockID is -1

ANV TVI SN NIV UVIN: TLU WNIWD LT TV IVVrJ YVIRI T T NoLUAlNld

INVA VUTUNY VI

O modify gr_createDomain to also initialize gr_domainBC, which contains boundary conditions. Along
|AXIS boundaries are periodic, along JAXIS they are OUTFLOW and if the mesh is 3D then along
KAXIS they are REFLECTIVE

A Now write a stand-alone subroutine that takes blockID as input and returns the bound box in a real
array bbox(LOW:HIGH,MDIM) and the delta -- the physical size of the cell in real array(MDIM).
delta(KAXIS) is set to 0 for a 2D mesh

20

AAAAAAAAAAAAAAAAAA

Adding Utilities and Testing Them

Prompts f :
P> At each of these prompts main.F90

aNow wrif was modified to exercise the new makefille

anext wi{ functionality and Makefilag: the
blockID ¢ modified to add new file eturns -1
for blockl itk LLM. The generated code almost

Qmodify always had compilation errors, st
the bounewererormosroor ae but they were easy to fix. And

O modify gr_createDomain to also initialize gr Usua”y arose from amblgmty s. Along
IAXIS boundaries are periodic, along JAXISE{1 (g prompt, though not n along

KAXIS they are REFLECTIVE
always.

in a real
IM).

O Now write a stand-alone subroutine that tak
array bbox(LOW:HIGH,MDIM) and the delte
delta(KAXIS) is set to 0 for a 2D mesh

21 Argonne°

AAAAAAAAAAAAAAAAAA

Adding Utilities and Testing Them

Prompts T At each of these prompts main.F90

QNow writ was modified to exercise the new makefille
anext wri{ functionality and Makefilaas

blockID ¢ modified to add new file
for blockl \vith LLM. The generated code almost

Qmodify m always had compilation errors, st
the bountewerrorwroeroor e Dut they were easy to fix. And

Qmodify gr « _ rose from ambiguity ¥yt
il The whole exercise took less dmpt, though not n along
KAXIS the . .

than two hours, including

O Now write 4 ' '
e & ma_k!ng my paper version for
SRS Vverification.

in a real
IM).

22 Argonne°

AAAAAAAAAAAAAAAAAA

The Algorithm

Took several iterations of changes in design and interaction with LLM to figure out

Q Part of the prompt that specifies what to do

Portion of the algorithm for creating mirrors

loop over all axes and create a new value for the coordinate
along each axis. If it is INTERIOR, newpos(axis)=pos(axis)

A Check if the particle is close to a block boundary if not INTERIOR newpos(axis) = 2.0*bbox(edgetype(axis), axis) - pos(axis)

Q If true check if it is close to a physical boundary If the newpos(axis) is outside the physical domain, and if the boundary
condition is periodic then newpos(axis) = newpos(axis) = _
Q If true apply boundary conditions gr_globalDomain(3 - edge(axis), axis) - (gr_globalDomain(edge(axis),

axis) - newpos(axis))

QI particle left the domain there is no need for virtual if it is any other boundary condition change edgetype(axis) to INTERIOR

particles and change newpos(axis) = pos(axis)
Qlf part'de got reflected bac_k no n_eed for virtual if after handling boundary conditions edgetype is still not INTERIOR then
particles along corresponding axis increment ptr by 1, and set ISTRUE((ptr) = axis
QIf virtual particles are needed create mirror foralli1to ptr
positions mirror(ISTRUE(i),i)=newpos(ISTRUE(i))
i i i if ptr > 1 then
Q If the particle is close to the boundary along 1 axis Pl =" ISTRUEE1;,iﬂg:neprSngTRUEm)
only, 1 mirror is needed mirror(ISTRUE(2),i+1)=newpos(ISTRUE(2
Q If it is close to two boundaries 3 mirrors are if ptr > 2 then ,
needed mirror(ISTRUE(1),i+2)=newpos(ISTRUE(1
mirror IS¥§UE g JI+2)=newpos Ig¥§HE %
Q If it is close to three boundaries 7 mirrors are o IS TRUE) -3 newhost ISTRUE

needed mirror(:, i+4) = newpos(:) a
23 Argonne

NATIONAL LABORATORY

Observations about Code generation

Promising Results — a lot of manual work still needed

a Prompts need to be precise, specific, and O Debugging generated code directly is not necessary

unambiguous Q It is better to reason about the deficiency in logic
Q It is like coding in a natural language through testing

Q Natural languages are imprecise by definition QOne can look at the reasoning shown by the LLM as it

OMakes communicating complicated requirements analyzes
to LLM difficult

O Decomposition of requirements into smaller _ _ _
chunks becomes unavoidable QOften inspecting the documentation can lead to

understanding the deficiency in logic

AOne can also ask for extensive inline documentation

QImplies more thought to be given to code design _ _
and componentization Q If one can, debugging the prompt is better

Qln the long run good for code maintainability

24 Argonne®

AAAAAAAAAAAAAAAAAA

More Observations about Code generation

Al found it easier to abandon working code when | thought of a
better approach

QExperimented with four different ways of implementing before
settiing down on the current one

AWith every iteration the code got cleaner and smaller

25

AAAAAAAAAAAAAAAAAA

More Observations about Code generation

Al found it easier to abandon working code when | thought of a

better approach

QExperimented with four different ways of implementing before

The Algorithm — Make Virtual Copies

(For each particle check if the Particle is
within one cell of block boundary for
Left/Right Edge along each dimension

(JWhere true create a virtual copy of the
particle

(IFind the neighboring block along each edge
where a virtual particle is created

(JFind the refinement level of the neighbor

(For each virtual particle update the
attributes

EIAssiin as overlapping with the neighboring
bloc

U If neighbor is at same refinement level value
to be deposited into one cell

L If neighbor is at finer level, value to be
deposited in 29 cells

L If neighbor is at coarser level, virtual particle
deposits into one cell, real particle deposits
into 24 cells.

subroutine checkEdges(bndbox,
del, pos, xedge, yedge, zedae)

—— given the coordinates of the
particle in pos, bounding box of
the block in bndbox, and size of

the cell in del, it returns values
in x/y/z/edge that indicate whether
a virtual particle is needed

subroutine processParticles (numParticles,
particleProps, src, dest, local)

—— sr¢ array contains the unprocessed particles,
dest has particles that need to move and local has
particles that stay after processing. This
subroutine calls checkedges, and another routine
that gets info about negh, creates virtual
particles as needed and puts them into the right
array

'd smaller

Argon neé

NATIONAL LABORATORY

More Observations about Code generation

Al found it easier to abandon working code when | thought of a

better approach

dExperimented with
The Algorithm — Make Virtu

(JFor each particle check if the Particle is
within one cell of block boundary for
Left/Right Edge along each dimension

(JWhere true create a virtual copy of the
particle

LIFind the neighboring block along each edge
where a virtual particle is created

LJFind the refinement level of the neighbor

(For each virtual particle update the
attributes

EIAssiin as overlapping with the neighboring
bloc

U If neighbor is at same refinement level value
to be deposited into one cell

L If neighbor is at finer level, value to be
deposited in 29 cells

U If neighbor is at coarser level, virtual particle

deposits into one cell, real particle deposits
into 29cells.

Prompt — checkEdges

Write a subroutine in Fortran that returns three integer
values returned in variables xedge, vedge and zedge

assume constants LOW=1, HIGH=2, MDIM=3

IAXIS=1, JAXIS = 2, KAXIS =3 are defining physical
dimensions

Inputs to the function are:

real array bndbox(LOW:HIGH,MDIM) -- bndBox(LOW,:) is
the lower left-hand corner and bndBox(HIGH;,:) is the
upper right-hand corner coordinates of a block

del(MDIM) are size of individual cells in the block along
the three dimensions

pos(MDIM) is the coordinate of a point

xedge contains values for IAXIS, vedge for JAXIS and
zedge for KAXIS

S . L o
that gets info about negh, creates virtual

particles as needed and puts them into the right
array

Each of the output arguments can take one of five values

10 if the pointis in the box and one cell or more away
from the both left and right edges

11 if the point is in the box and less than a cell away
from left edge

12 if the point is in the box and less than a cell away
from right edge

13 if the point is outside the box and less than a cell
away from left edge

14 if the point is outside the box and less than a cell
away from right edge

15 if the point is outside the box and more than a cell
away from both edges

Argon neé

NATIONAL LABORATORY

More Observations about Code generation

Al found it easier to abandon working code when | thought of a
better approach

QExperimented with four different ways of implementing before
setting down on the current one

AWith every iteration the code got cleaner and smaller

With plenty of inline comments in the code and preserved
prompts | have almost complete specification of the code
Excellent for maintenance

Use-case 2 — Code Translation

Qlt all started with MCFM, a Monte Carlo code that gives predictions for a wide range of
processes at hadron colliders

It needs to be integrated into a new framework Pepper which is a GPU based code
developed to handle the next generation of computational work for the colliders

O Pepper is written in C++ and aims to obtain performance portability with Kokkos
OMCFM is Fortran — scientists want it converted to C++

OMCFM has nearly 500 source files spread across multiple directories, with around 50-200
lines per file. Most files fit within the LLM context window

O https://neucol.github.io/pages/software

29 Argonne°

AAAAAAAAAAAAAAAAAA

Initial Exploration

a All of this was happening when ChatGPT had just started making waves, and we decided
it would be worth exploring code translation as a use case

Q It starting with cutting and pasting code snippets of mostly arithmetic into the chat window
and asking for translation

» Turned out the translation was syntactically correct

O But translation is not about only syntax, and code is not just arithmetic
» We clearly needed more

O We also thought scripting can be a part of the solution, along with a human in the loop
feature

30

AAAAAAAAAAAAAAAAAA

Initial Exploration

a All of this was happening when ChatGPT had just started making waves, and we decided
it would be worth exploring code translation as a use case

Q It starting with cutting and pasting code snippets of mostly arithmetic into the chat window
and asking for translation

» Turned out the translation was syntactically correct

O But translation is not about only syntax, and code is not just arithmetic
» We clearly needed more

O We also thought scripting can be a part of the solution, along with a human in the loop
feature

What resulted from the desire to do code translation without the need to
understand the code, and to do it rapidly is CodeScribe

Overview of The Code Translation Task

/SOU rce \

»Modules
—» Datastructures
—» Applications

— Production

\ —> Jests /

O The code is organized into a directory structure shown above

Q Tests (a subset of Production Applications) that provide coverage for all sections of the code
can be used as the test-suite to ensure correctness for any refactoring of the code

Q Tests are the reason why CodeScribe became a viable solution

32 Argonne/

C++ headers and source.

example_mod. f90

module example_mod
use types
use nf_mod
implict none

public
integer :: kdot
integer,parameter:: nloop=2, fn
real(dp) ,parameter:: zip=0._dp
real (dp) ,parameter:: one=1._dp

=-5

complex(dp) ,parameter:: im=(zip,one)

logical :: myflag

real(dp) :: tau(-nf:nf), 1ln(nf)
real(dp) :: le

real(dp) :: bxm, bxn

save

end module example_mod

33

example_mod. hpp

Example of Fortran module conversion to

#ifndef EXAMPLE_MOD
#define EXAMPLE_MOD
#include<nf_mod. hpp>

namespace example_mod {
using namespace nf_mod;

extern int kdot;
const int nloop = 2;
const int fn = -5;
const double zip = 0
const double one =1
extern bool myflag;
const std::complex<double> im(zip,
extern double tau[2*nf+1], 1[nf];
extern double le;

.0;
.0;

extern double bxm, bxn;
}
\#endif

one) ;

example_mod.cpp

(/,;}nclude<examp1e_mod.hpp> ﬁ\\\

#include<nf_mod. hpp>

namespace example_mod {
using namespace nf_mod;

int kdot;

bool myflag;

double tau[2*nf+1], 1[nf];
double le;

\\‘¥doub1e bxm, bxn;
} %

Arg

onneé

NATIONAL LABORATORY

Example of FORTRAN subroutine conversion to C++.

couplz.f

//rsubroutine couplz(xw)

use constants_mod
use nf_mod

use zcouple_mod

use ewcharge_mod
real(dp):: xw

11

L

return

\\‘end subroutine couplz

couplz.cpp

using
using
using
using
//
//

34

namespace
namespace
namespace
namespace

return;
U

///;1nclude<constants_mod.hpp>
#include<nf_mod.hpp>
#include<zcouple_mod. hpp>

#include<ewcharge_mod. hpp>

void couplz(double xw) {
constants_mod;

nf _mod;

zcouple mod;
ewcharge mod;

~

/

Argon ne;

NATIONAL LABORATORY

Our Approach — A Step-by-step Process

[C++ Driver Code 1 FORTRAN-C API >

(ex: src/BLHA/qu_w1jet.cxx)J

4)
Core FORTRAN Codebase
- y

Q Determine small groups of modules and data structures that are interdependent on one

another but independent of the source code otherwise

Q Develop prompts to teach LLM the rules for conversion from Fortran to C++

Q Write corresponding Fortran-C-API to integrate the generated code with the application

which still has a lot of Fortran code
A Run the relevant portion of the test-suite

O Debug manually and/or refine prompts
35

AAAAAAAAAAAAAAAAAA

Our Approach — A Step-by-step Process

FORTRAN-C API
Core FORTRAN Codebase
C++ Driver Code Tests
(ex: src/BLHA/qgb_w1jet.cxx) i FORTRAN-C API
)[Core C++ Codebase]—

Q Determine small groups of modules and data structures that are interdependent on one
another but independent of the source code otherwise

Q Develop prompts to teach LLM the rules for conversion from Fortran to C++

Q Write corresponding Fortran-C-API to integrate the generated code with the application
which still has a lot of Fortran code

A Run the relevant portion of the test-suite
O Debug manually and/or refine prompts

36 Argonne6

AAAAAAAAAAAAAAAAAA

Tool Developed For Conversion -- CodeScribe

X

Failure
Y - ; Success
[TOML Chat Templates]7 [Developer Rewew/Testlng]i
A A
Y
FORTRAN FORTRAN files with similar C++ and Fortran-C C++
Codebase code patterns Interface Files Codebase
A A
Y Y

([Indexing]—)[Neural Inspection] [Draft Generation]——»[Neural Translation]—}

<[> CodeScribe

A customized Python engine to experiments with different approaches for code conversion and
test performance of different models.

O akashdhruv/CodeScribe

37 Argon ne3

NATIONAL LABORATORY

Index command

O Maps the source tree by analyzing file hierarchies,
dependencies, and constructs, creating YAML files for
efficient navigation

O YAML files store metadata and are compiled into an
inverse dictionary to support accurate code queries

U The Index command prevents LLM hallucinations by
providing a structural map to guide accurate code
translation that is used as a RAG database

38

Structure of scribe.yaml

directory: src
files:
filel.£90:
modules:
- modulel
subroutines:
- subroutinel
- subroutine2
functions:
- functionl

file2.£90:
modules: []
subroutines:
- subroutineA
functions:
- functionB

Argonne°

NATIONAL LABORATORY

Inspect command and TOML Chat completion Templates

O Enables interactive queries about source code, | * Structure of seed_prompt.tonl
[[chat]]
role = "user"
O This command is used to build the chat content = "Rules and syntax-related instructions for code conversion>"
completion templates: [[chat]]
role = "assistant"
> User Starts th deSCr'b'ng the " |eS Of content = "I am ready. Please give me a test problem."
Wi 10] u
conversion and then provides a dummy tleneel)
example Of the source COde content = "<Template of contents in a source file>"
- : . [[chat]]
» Assistant provides syntactically correct code role = "assistant"
content = "<Desired contents of the converted file. Syntactically correct code>"
» User appends the actual source code which [[chat]]
is then passed on the LLM to complete the role = fuser’ o
conversation as the assistant content = "<Append code from a source file>

This is useful for identifying patterns in files and building chat completion
prompts for different patterns

39 Argonne°

NATIONAL LABORATORY

[[chat]]

role = "user"

content = """

You are a code conversion tool for a scientific computing application.

The application is organized as different source files in a directory structure.
I will give you a Fortran file which you will convert to a C++ source code file.

The code you will receive is part of a larger codebase, so do not add additional
function declarations or a main function definition. Just perform the conversion
process line-by-line.

Here are some rules I want you to follow:

1. The input code is a Fortran subroutine or function which needs to be converted
to a C++ function. Replace the Fortran structure:

use <module-name>
subroutine <func-name>(xw)
real(dp):: xw

end subroutine
with the C++ equivalent:

#include <module-name.hpp>
using namespace <module-name>;

void <func-name>(double& xw) {
return;

}

extern "C" {
void <func-name>_ wrapper(double* xw) {
<func-name> (*xw) ;

2. Replace any use “<module-name>" statements with “#include <module-name.hpp>"
and using “namespace <module-name>; . Place the “#include® statements at the top
of the file. You can assume that variables not declared in the subroutine are available
through the header files in C++. Ignore “use types and other irrelevant modules.

3. Convert Fortran types as follows:

“real(dp)” to “double”
“complex(dp)” to “std::complex<double>" Include the “<complex>" header in case of complex types.

Convert Fortran arrays to C++ using the “FArray template classes which support Fortran-like
indexing. For example, replace:

real(dp), dimension(nx, ny) :: a
with:

FArray2D<double> a(nx, ny);

Include the <FArray.hpp> header and use the appropriate class (FArraylD, FArray2D, FArray3D) depending on

40

Arg

onne

NATIONAL LABORATORY

DRAFT command

O Creates a file specific prompt
for LLM consumption.

[Created file has "scribe”
suffix.

1 Basic types and
multidimensional arrays are

converted from Fortran to C++.

O YAML Index files are used to
provide context about the use
of external functions.

O Provides additional datapoint
to LLM by doing trivial code
conversions

Excerpt from <results>/rag-sensitivity/with-function-context/target.scribe

scribe-prompt:

scribe-prompt:

scribe-prompt:

scribe-prompt:
scribe-prompt:
scribe-prompt:
scribe-prompt:

Write corressponding extern "C" with _wrapper added to the name.
Refer to the template for treating Farray and scalars

When variables are used as function. They should be treated as
external or statement functions. External functions are available
in header files

Statement functions should be converted to equivalent lambda functions
in C++. Include [&] in capture clause to use variables by reference

Lsml is an external function
LO is an external function
Inrat is an external function
Ll is an external function

<draft-cpp-code>

</draft-cpp-code>

41

Argonne°

NATIONAL LABORATORY

| ! Copyright (C) 2019-2022, respective authors of MCFM.
! SPDX-License-Identifier: GPL-3.0-or-later

function A51(j1,32,33,34,35,2za,z2zb)

Amplitudes taken from Appendix IV of

Z2.~Bern, L.~J.~Dixon and D.~A.~Kosower,

%" "One loop amplitudes for e+ e- to four partons,''
Nucl.\ Phys.\ B {\bf 513}, 3 (1998)
[hep-ph/9708239].

Modified to remove momentum conservation relations

anaoaoao0aan

use types

use constants_mod

use mxpart_mod

use sprods_com_mod

use scale_mod

use epinv_mod

use epinv2_mod

implicit none

complex(dp):: AS51

complex(dp):: za(mxpart,mxpart),zb(mxpart,mxpart)
integer:: 3j1,32,3j3,3j4,35

complex(dp):: Vec,Fcc,Vsc,Fsc,112,123,L0,L1,Lsml,AS5lom
complex(dp):: lnrat,zab2

real(dp):: sl123

zab2(j1,32,33,34)=2a(j1,32)*zb(j2,34)+za(jl,33)*2zb(33,34)

c -i * AStree Eq.(IV.1)
‘ s123=s(j1,j2)+s(j2,33)+s(33,31)
ASlom=-za(j3,j4)*zab2(3j3,3j1,32,35)/(za(jl,j2)*za(j2,j3)*s123)

| c=-leading N Eg. (IV.2)
112=1nrat(musq,-s(jl1l,3j2))
123=1nrat(musq,-s(j2,33))

Vece=

& -(epinv*epinv2+epinv*112+half*112%%2)
& -(epinv*epinv2+epinv*123+half*123%+%2)
& -two*(epinv+123)-four

c--Eq. (IV.3)
Fcc=zab2(3j3,3j1,32,35)/(za(jl,j2)*za(j2,j3)*sl23)
& *(za(j3,j4)*Lsml(-s(jl,j2),-s123,-s(j2,33),-s123)
& +two*za(3j3,jl)*zab2(j4,32,33,31)
& *L0(-s(32,33),-s123)/s123)

| e--Eq. (1IV.4)
| Vsc =half*(epinv+123)+one
| c==Eq. (IV.5)
Fsc =-za(]3,j4)*za(j3,jl)*zb(j1,]5)
& /(za(3jl,j2)*za(j2,33))*L0(-s(j2,33),-s123)/sl23
& +half*za(j3,jl)**2*zb(jl,j5)*zab2(j4,3j2,33,31)
& /(za(jl,32)*za(j2,33))*L1(-s(j2,33),-s123)/s123%*2

AS51=(Vcc+Vsc)*ASLom+Fcc+Fsc

return
end

scribe-prompt:
scribe-prompt:
scribe-prompt:
scribe-prompt:
scribe-prompt:
scribe-prompt:
scribe-prompt:

#include <cmath>
#include <comple:
#include <consta
#include <epinv2

#include

#include <mxpart

#include

#include <sprods
#include <types.

function

using
using
using
using
using
using
using

namespace
namespace
namespace
namespace
namespace
namespace
namespace

Write corressponding extern "C" with _wrapper added to the name. Refer to the template for treating Farray and scalars

When variables are used as function. They should be treated as external or statement functions. External functions are available in header files
Statement functions should be converted to equivalent lambda functions in C++. Include [&)] in capture clause to use variables by reference

Lsml is an external function

L0 is an external function

Inrat is an external function

Ll is an external function

x>
nts_mod.hpp>
_mod.hpp>

<epinv_mod.hpp>

_mod.hpp>

<scale_mod.hpp>

_com_mod. hpp>
hpp>

A51(j1,32,33,34,35,2za,2b)

types;
constants_mod;
mxpart_mod;
sprods_com_mod;
scale_mod;
epinv_mod;
epinv2_mod;

complex<double> AS51

FArray<std::complex<double>> za(mxpart,mxpart),zb(mxpart,mxpart)

int j1,j2,33,34,35

complex<double> Vcc,Fcc,Vsc,Fsc,112,123,L0,L1,Lsml,A5lom

complex<double> lnrat,zab2
double s123

zab2(j1,3j2,33,34)=2a(jl,j2)*zb(j2,34)+za(j1,33)*zb(33,]34)

s123=s(jl,j2)+s(j2,33)+s(33,]1)
ASlom=-za(j3,j4)*zab2(j3,31,32,35)/(za(j1,j2)*za(j2,33)*s123)

112=1lnrat(musq,-s(jl,32))
123=1nrat(musq,-s(j2,33))

Vce=

\ -(epinv*epinv2+epinv*112+half*pow(112,2))
\ -(epinv*epinv2+epinv*123+half*pow(123,2))

\ -two*(epinv+123)-four

Fcc=zab2(j3,31,32,35)/(za(jl,j2)*za(j2,j3)*s123)
\ *(za(j3,j4)*Lsml(-s(jl,j2),-s123,-s(j2,33),-s123)
\ +two*za(j3,jl)*zab2(j4,32,33,31)

\ *L0(-s(j2,3j3),-s123)/s123)

Vsc =half*(epinv+123)+one

Fsc =-za(j3,j4)*za(j3,jl)*zb(j1,j5)

\ /(za(jl,j2)*za(j2,33))*L0(-s(32,33),-s123)/s123

\ +half*za(j3,jl)**2*zb(jl,j5)*zab2(j4,32,33,31)

\ /(za(jl,j2)*za(j2,33))*L1(-s(j2,33),-s123)/pow(sl23,2)

A51=(Vcc+Vsc) *AS5Lom+Fcc+Fsc

return

end

oriric

NATIONAL LABORATORY

nnononoaan

Copyright (C) 2019-2022, respective authors of MCFM.
SPDX-License-Identifier: GPL-3.0-or-later

function AS51(j1,3j2,33,3j4,35,za,zb)

Amplitudes taken from Appendix IV of

Z.~Bern, L.~J.~Dixon and D.~A.~Kosower,

%" "One loop amplitudes for e+ e- to four partons,''
Nucl.\ Phys.\ B {\bf 513}, 3 (1998)
[hep-ph/9708239].

Modified to remove momentum conservation relations

use types

use constants_mod

use mxpart_mod

use sprods_com_mod

use scale_mod

use epinv_mod

use epinv2_mod

implicit none

complex(dp):: AS1

complex(dp):: za(mxpart,mxpart),zb(mxpart,mxpart)
integer:: 3j1,32,33,34,35

complex(dp):: Vecc,Fcc,Vsc,Fsc,112,123,L0,L1,Lsml,AS5lom
complex(dp):: lnrat,zab2

real(dp):: sl123

zab2(j1,32,33,34)=2a(j1,j2)*2zb(j2,j4)+2za(jl,33)*2zb(]3,34)
-i * AStree Eq.(IV.1)

s123=s(j1,32)+s(32,33)+s(33,31)
AS5lom=-za(j3,j4)*zab2(j3,31,32,35)/(za(jl,j2)*za(j2,j3)*sl123)

c--leading N Eq. (IV.2)

112=1nrat(musq,-s(j1l,3j2))
123=1nrat(musq,-s(3j2,33))

Vece=

& -(epinv*epinv2+epinv*112+half*112%+*2)
& -(epinv*epinv2+epinv*123+half*123%*2)
& -two*(epinv+123)-four

c--Eq. (IV.3)

Fce=zab2(33,3j1,32,35)/(za(jl,j2)*za(j2,33)*s123)

& *(za(j3,j4)*Lsml(-s(jl,j2),-s123,-s8(j2,33),-s123)
& +two*za(j3,jl)*zab2(j4,32,33,31)

& *L0(-s(j2,33),-s123)/s123)

c--Eq. (IV.4)

Vsc =half*(epinv+123)+one

c--Eq. (IV.5)

Fsc =-za(j3,j4)*za(j3,31)*zb(j1,35)

& /(za(jl,3j2)*za(j2,33))*L0(-s(j2,33),-s123)/s123

& +half*za(j3,jl)**2*zb(jl,j5)*zab2(j4,32,33,31)

& /(za(jl,3j2)*za(j2,33))*L1(-s(j2,33),-s123)/s123%*2

AS51=(Vcc+Vsc)*ASLom+Fcc+Fsc

return
end

#include <complex>

#include <constants_mod.hpp>
#include <epinv2_mod.hpp>
#include <epinv_mod.hpp>
#include <mxpart_mod.hpp>
#include <scale_mod.hpp>
#include <sprods_com_mod.hpp>
#include <types.hpp>

#include <FArray.hpp>

using namespace types;

using namespace constants_mod;
using namespace mxpart_mod;
using namespace sprods_com mod;
using namespace scale_mod;
using namespace epinv_mod;
using namespace epinv2_mod;

std::complex<double> A51(int jl1, int j2, int j3, int j4, int j5, FArray2D<std::complex<double>>& za, FArray2D<std::complex<double>>& zb) {

std: :complex<double> Vcc, Fcc, Vsc, Fsc, 112, 123, AS5lom;
std: :complex<double> zab2(mxpart, mxpart);

double s123;

zab2(j1,j2) = za(jl,3j2)*zb(j2,34) + za(jl,33)*zb(33,34);

s123 = s(j1,32) + s(32,33) + s(33,31);

ASlom = -za(3j3,j4) * zab2(3j3,jl) / (za(3jl,j2) * za(j2,3j3) * sl23);

112 = lnrat(musq,-s(jl,j2)

)i
123 = lnrat(musq,-s(j2,3j3));

Vecc = -(epinv * epinv2 + epinv * 112 + half * std::pow(1l1l2, 2))
-(epinv * epinv2 + epinv * 123 + half * std::pow(123, 2))

-two * (epinv + 123) - four;

Fcc = zab2(3j3,jl) / (za(jl,j2) * za(3j2,3j3) * sl23)
* (za(3j3,j4) * Lsml(-s(jl,j2),-sl23,-s(j2,33),-s123)

+ two * za(j3,jl) * zab2(j4,j2) * LO(-s(Jj2,33),-sl23) / sl123);

Vsc = half * (epinv + 123) + one;
Fsc = -za(j3,j4) * za(3j3,3jl) * zb(jl,35)
/ (za(3jl,j2) * za(j2,3j3)) * LO(-s(j2,33),-s123) / sl23

+ half * std::pow(za(j3,jl), 2) * zb(jl,j5) * zab2(j4,3j2)
/ (za(3jl,j2) * za(j2,j3)) * L1(-s(j2,33),-s123) / std::pow(sl23, 2)

return (Vcc + Vsc) * AS5lom + Fcc + Fsc;

}

extern "C" {

std: :complex<double> A51 wrapper(int jl, int j2, int j3, int j4, int j5,

FArray2D<std::complex<double>> za(zaf, mxpart, mxpart);
FArray2D<std::complex<double>> zb(zbf, mxpart, mxpart);
return AS51(jl, j2, j3, j4, j5, za, zb);

43

std::complex<double>* zaf, std::complex<double>* zbf) {

Arg

onne

NATIONAL LABORATORY

Translate command

Chat completion
template
4 Translation uses a chat template seed prompt,
appending source and draft code to produce
converted code filename.scribe filename.F90

O The LLM outputs the C++ source and Fortran-C Y
interface enclosed within, saving them as [Translate J

filename.cpp and filename_fi.f90
filename_fi.F90 filename.cpp

A. Dhruv and A. Dubey, “Leveraging Large Language Models for
CodeTranslation and Software Development in Scientific
Computing,”’Proceedings of PASC-25
https://dl.acm.org/doi/abs/10.1145/3732775.3733572

On arXiv : doi: 10.48550/arXiv.2410.24119.

O Interaction with the LLM uses APls, local

models, or manual JSON-based copy-pasting, as
outlined in the Inspect command

44

https://dl.acm.org/doi/abs/10.1145/3732775.3733572
https://doi.org/10.48550/arXiv.2410.24119

Model Sensitivity Study

The time shown in the figure is the time for
developer review and testing per file. Higher

times reflect less correct code, and therefore
more iterations for getting to correct code

CodelLlama-7B and Mistral-7B required
significant manual review and testing

AGPT-3.5 Turbo and GPT-40 demonstrated
strong adherence to chat template,
reducing developer time

dOverall, GPT-40 delivered the best
performance due to its high parameter
count and multi-step reasoning capabilities

45

14 -

Time (m)

Bl Review Time
B Testing Time

Observations About Code Translation

Excellent Results — significant time saved in translation

O Pure syntactical conversion is almost 100% right, not so much the whole code

0 Models with high parameter count (~trillion) and multi-step reasoning capabilities are
desirable for these tasks

O Model fine-tuning can potentially alleviate a lot of issues for low parameter count
models. Fine-tuning is a common practice for application specific LLM use

0 Ramp-on methodology — wholesale conversions almost always wrong and difficult to
analyze
» Arelated question -- how can people be trained to use tools effectively?

46 Argonne°

AAAAAAAAAAAAAAAAAA

CONCLUSIONS

O LLMs have a great deal of promise in coding related tasks

O A judicious combination of scripts, LLMs and human-in-the-loop have already
helped in reducing tedious tasks

O They are still very far from being reliable assistants for non-trivial coding on their
own

O We have had no luck so far with code refactoring — explaining the full context of the
existing code has been too difficult so far

47 Argonne°

AAAAAAAAAAAAAAAAAA

