
Using Generative AI for Coding Tasks in
Scientific Software

ANSHU DUBEY & AKASH DHRUV
Mathematics and Computer Science,
Argonne National Laboratory,
Lemont, IL

JULY 9, 2025
WEBINAR SERIES BEST PRACTICES FOR HPC SOFTWARE
DEVELOPERS

2

Acknowledgements

q This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced
Scientific Computing Research (ASCR), under the SciDAC Projects RAPIDS, Neucol, and ENAF

q This work was done in the Mathematics and Computer Science Division at Argonne National
Laboratory

2

3

Motivation

qOne would ideally like an assistant who handles all the tedious tasks
qLLMs are supposedly such assistants
qMany claims about increased productivity in software development

qWe wanted to explore the use of LLMs in scientific code development in two
scenarios
qOne is more for fun, and therefore optional
q The other was nothing but tedium, so any assistance would help

qThis presentation is about two use cases
qNew code for a new communication algorithm
qCode translation of a legacy Fortran code to C++

qWe share our experience and observations

Every code related task involves some tedium

3

4

qMassive particles for N-body methods used in astrophysics
q The code has both mesh and particles

qIn parallel codes mesh is divided into blocks that are distributed among
processors

q Particles carry mass, mesh carries density
q Particles deposit density onto the mesh
q Mesh computes gravitational potential, forces and acceleration
q Forces and acceleration are conveyed back to particles who move to a

new position
q Cycle repeats

qThe deposition of mass from a particle as density into the mesh
covers cells adjacent to the one where the particles is located

qNeed for communication occurs when a particle is occupying a cell
on the boundary of a block

Use-case 1 – Developing New Code

4

5

qMassive particles for N-body methods used in astrophysics
q The code has both mesh and particles

qIn parallel codes mesh is divided into blocks that are distributed among
processors

q Particles carry mass, mesh carries density
q Particles deposit density onto the mesh
q Mesh computes gravitational potential, forces and acceleration
q Forces and acceleration are conveyed back to particles who move to a

new position
q Cycle repeats

qThe deposition of mass from a particle as density into the mesh
covers cells adjacent to the one where the particles is located

qNeed for communication occurs when a particle is occupying a cell
on the boundary of a block

Use-case 1 – Developing New Code

5

6

qCommonly used method is to use halo cells during
deposition and then do a reverse halo filling

qWorks fine with Uniformly discretized mesh

Communication Algorithm

6

7

qCommonly used method is to use halo cells during
deposition and then do a reverse halo filling

qWorks fine with Uniformly discretized mesh

Communication Algorithm

qMore complicated when there is Adaptive
Mesh Refinement (AMR)

qHalo filling is expensive because it is not
necessarily nearest neighbor communication

qTo avoid spurious forces on the refined side
deposition needs to occur on two cells along
each dimension

7

8

qCommonly used method is to use halo cells during
deposition and then do a reverse halo filling

qWorks fine with Uniformly discretized mesh

Communication Algorithm

qMore complicated when there is Adaptive
Mesh Refinement (AMR)

qHalo filling is expensive because it is not
necessarily nearest neighbor communication

qTo avoid spurious forces on the refined side
deposition needs to occur on two cells along
each dimension

Two cells on the
finer side

8

9

New Communication Algorithm
qMake virtual copies of the particle

qSend virtual copies instead of filled halo cells

qDeposit locally

9

10

New Communication Algorithm
qMake virtual copies of the particle

qSend virtual copies instead of filled halo cells

qDeposit locally

qAdditional information is needed at physical
boundaries

qSome boundary conditions may obviate the
need for virtual particles

qPeriodic boundary conditions change the
destination of the virtual particles

10

11

New Communication Algorithm
qMake virtual copies of the particle

qSend virtual copies instead of filled halo cells

qDeposit locally

qAdditional information is needed physical
boundaries

qSome boundary conditions may obviate the
need for virtual particles

qPeriodic boundary conditions change the
destination of the virtual particles

11

Outflow physical
boundary no contribution to potential

12

New Communication Algorithm
qMake virtual copies of the particle

qSend virtual copies instead of filled halo cells

qDeposit locally

qAdditional information is needed physical
boundaries

qSome boundary conditions may obviate the
need for virtual particles

qPeriodic boundary conditions change the
destination of the virtual particles

Outflow physical
boundary no contribution to potential

Periodic
boundary
particles
end up
elsewhere

12

13

New Communication Algorithm
qAdditional information is needed for AMR

q Is the particle close to a fine-coarse boundary
q If so where does it deposit on two cells instead of

one

q I want LLMs to generate code for me
q And I want to do test-driven development

q Everyone knows you can’t assume correctly
generated code

q So I need to break down the algorithm into smaller,
testable steps

q And then I want to see if I can get LLM to also generate
the test for me

13

14

New Communication Algorithm
qAdditional information is needed for AMR

q Is the particle close to a fine-coarse boundary
q If so where does it deposit on two cells instead of

one

q I want LLMs to generate code for me
q And I want to do test-driven development

q Everyone knows you can’t assume correctly
generated code

q So I need to break down the algorithm into smaller,
testable steps

q And then I want to see if I can get LLM to also generate
the test for me.

This development is for Flash-X, a well-established code, which means I can make assumptions about available
utilities. But I also need to figure out how to fake those utilities for the purpose of testing the generated code

14

15

Development and Testing Methodolgy

q Set up the testing environment
q Define constants that exist in the code
q Create a uniformly discretized mesh with easy to inspect

numbers
q Create simplified versions of the utilities available in the

code

qFor the purpose of testing overall I specified a uniform
grid with 4x4 blocks for 2D and 4^3 blocks for 3D, blocks
have 8 cells along each dimension, and physical size
being 0.0-64.0 along each dimension

q I have a copy of the mesh on paper, and I manually
inspect the output of tests and verify against my paper
setup.

15

16

Development and Testing Methodolgy

q Set up the testing environment
q Define constants that exist in the code
q Create a uniformly discretized mesh with easy to inspect

numbers
q Create simplified versions of the utilities available in the

code

qFor the purpose of testing overall I specified a uniform
grid with 4x4 blocks for 2D and 4^3 blocks for 3D, blocks
have 8 cells along each dimension, and physical size
being 0.0-64.0 along each dimension

q I have a copy of the mesh on paper, and I manually
inspect the output of tests and verify against my paper
setup.

16

17

View of the working folder

qAll the routines with a check
mark exist in the main code
q Here simpler version for

testing are generated by AI
q The test is also generated

by AI

17

18

Prompt for creating the mesh – constants and variables are already known to the LLM

Write a routine gr_createDomain that creates a mesh. It prompts the user to specify the dimensions.
If the returned value is 2, then it builds mesh of size 64^2, if it is 3 it builds a mesh of size 64^3. The
mesh is to be divided into blocks where the size of the blocks is 16^2 for a 2D mesh and 16^3 for a 3D
mesh gr_blkCount is the total number of blocks created blocks are assumed to be numbered in a
lexicographic order starting from lower left end of the domain to upper right hand. physical size of the
domain is 0.0 to 64.0 along each dimension

initialize gr_globalDomain with the global domain size
assign the number of blocks to gr_blkCount, allocate gr_blockBound array as defined
initialize it with block bounds for each of the created blocks

Prompt Example – Mesh generation
Grid_data Module

integer gr_blkCount
integer gr_domainBC sized as (LOW:HIGH, MDIM) storing the boundary conditions as
defined before
real gr_globalDomain(LOW:HIGH,MDIM) storing the bounds of the global domain size
real gr_blockBound(LOW:HIGH,MDIM,gr_blkCount)

18

19

Prompts for faking the utilities

qNow write a program that will create this domain and also create a makefille

qNext write a routine gr_xyzToBlock which takes coordinates of a point as input and returns the
blockID of the block on which the point lies. If the point lies outside of the global domain it returns -1
for blockID

qmodify main.f90 so that it repeatedly prompts the user for a coordinate, it then prints its blockID and
the boundbox for the block. It exits the loop with returned value of blockID is -1

qmodify gr_createDomain to also initialize gr_domainBC, which contains boundary conditions. Along
IAXIS boundaries are periodic, along JAXIS they are OUTFLOW, and if the mesh is 3D then along
KAXIS they are REFLECTIVE

qNow write a stand-alone subroutine that takes blockID as input and returns the bound box in a real
array bbox(LOW:HIGH,MDIM) and the delta -- the physical size of the cell in real array(MDIM).
delta(KAXIS) is set to 0 for a 2D mesh

Adding Utilities and Testing Them

19

20

Prompts for faking the utilities

qNow write a program that will create this domain and also create a makefille

qNext write a routine gr_xyzToBlock which takes coordinates of a point as input and returns the
blockID of the block on which the point lies. If the point lies outside of the global domain it returns -1
for blockID

qmodify main.f90 so that it repeatedly prompts the user for a coordinate, it then prints its blockID and
the boundbox for the block. It exits the loop with returned value of blockID is -1

qmodify gr_createDomain to also initialize gr_domainBC, which contains boundary conditions. Along
IAXIS boundaries are periodic, along JAXIS they are OUTFLOW, and if the mesh is 3D then along
KAXIS they are REFLECTIVE

qNow write a stand-alone subroutine that takes blockID as input and returns the bound box in a real
array bbox(LOW:HIGH,MDIM) and the delta -- the physical size of the cell in real array(MDIM).
delta(KAXIS) is set to 0 for a 2D mesh

Adding Utilities and Testing Them

At each of these prompts main.F90
was modified to exercise the new
functionality and Makefile was
modified to add new files. All done
with LLM.

20

21

Prompts for faking the utilities

qNow write a program that will create this domain and also create a makefille

qNext write a routine gr_xyzToBlock which takes coordinates of a point as input and returns the
blockID of the block on which the point lies. If the point lies outside of the global domain it returns -1
for blockID

qmodify main.f90 so that it repeatedly prompts the user for a coordinate, it then prints its blockID and
the boundbox for the block. It exits the loop with returned value of blockID is -1

qmodify gr_createDomain to also initialize gr_domainBC, which contains boundary conditions. Along
IAXIS boundaries are periodic, along JAXIS they are OUTFLOW, and if the mesh is 3D then along
KAXIS they are REFLECTIVE

qNow write a stand-alone subroutine that takes blockID as input and returns the bound box in a real
array bbox(LOW:HIGH,MDIM) and the delta -- the physical size of the cell in real array(MDIM).
delta(KAXIS) is set to 0 for a 2D mesh

Adding Utilities and Testing Them

At each of these prompts main.F90
was modified to exercise the new
functionality and Makefile was
modified to add new files. All done
with LLM. The generated code almost

always had compilation errors,
but they were easy to fix. And
usually arose from ambiguity
in the prompt, though not
always.

21

22

Prompts for faking the utilities

qNow write a program that will create this domain and also create a makefille

qNext write a routine gr_xyzToBlock which takes coordinates of a point as input and returns the
blockID of the block on which the point lies. If the point lies outside of the global domain it returns -1
for blockID

qmodify main.f90 so that it repeatedly prompts the user for a coordinate, it then prints its blockID and
the boundbox for the block. It exits the loop with returned value of blockID is -1

qmodify gr_createDomain to also initialize gr_domainBC, which contains boundary conditions. Along
IAXIS boundaries are periodic, along JAXIS they are OUTFLOW, and if the mesh is 3D then along
KAXIS they are REFLECTIVE

qNow write a stand-alone subroutine that takes blockID as input and returns the bound box in a real
array bbox(LOW:HIGH,MDIM) and the delta -- the physical size of the cell in real array(MDIM).
delta(KAXIS) is set to 0 for a 2D mesh

Adding Utilities and Testing Them

At each of these prompts main.F90
was modified to exercise the new
functionality and Makefile was
modified to add new files. All done
with LLM. The generated code almost

always had compilation errors,
but they were easy to fix. And
usually arose from ambiguity
in the prompt, though not
always.

The whole exercise took less
than two hours, including
making my paper version for
verification.

22

23

qCheck if the particle is close to a block boundary
q If true check if it is close to a physical boundary
q If true apply boundary conditions

qIf particle left the domain there is no need for virtual
particles

qIf particle got reflected back no need for virtual
particles along corresponding axis

q If virtual particles are needed create mirror
positions
q If the particle is close to the boundary along 1 axis

only, 1 mirror is needed
q If it is close to two boundaries 3 mirrors are

needed
q If it is close to three boundaries 7 mirrors are

needed

The Algorithm

Portion of the algorithm for creating mirrors

Took several iterations of changes in design and interaction with LLM to figure out
q Part of the prompt that specifies what to do
loop over all axes and create a new value for the coordinate
along each axis. If it is INTERIOR, newpos(axis)=pos(axis)

If not INTERIOR newpos(axis) = 2.0*bbox(edgetype(axis), axis) - pos(axis)
If the newpos(axis) is outside the physical domain, and if the boundary
condition is periodic then newpos(axis) = newpos(axis) =
gr_globalDomain(3 - edge(axis), axis) - (gr_globalDomain(edge(axis),
axis) - newpos(axis))

 if it is any other boundary condition change edgetype(axis) to INTERIOR
and change newpos(axis) = pos(axis)
if after handling boundary conditions edgetype is still not INTERIOR then
increment ptr by 1, and set ISTRUE(ptr) = axis

for all i 1 to ptr
 mirror(ISTRUE(i),i)=newpos(ISTRUE(i))

if ptr > 1 then
 mirror(ISTRUE(1),i+1)=newpos(ISTRUE(1))
 mirror(ISTRUE(2),i+1)=newpos(ISTRUE(2)

if ptr > 2 then
 mirror(ISTRUE(1),i+2)=newpos(ISTRUE(1))
 mirror(ISTRUE(3),i+2)=newpos(ISTRUE(3))
 mirror(ISTRUE(2),i+3)=newpos(ISTRUE(2))
 mirror(ISTRUE(3),i+3)=newpos(ISTRUE(3))
 mirror(:, i+4) = newpos(:)

23

24

Observations about Code generation

qPrompts need to be precise, specific, and
unambiguous
q It is like coding in a natural language
q Natural languages are imprecise by definition

qMakes communicating complicated requirements
to LLM difficult

q Decomposition of requirements into smaller
chunks becomes unavoidable
qImplies more thought to be given to code design

and componentization
qIn the long run good for code maintainability

Promising Results – a lot of manual work still needed

qDebugging generated code directly is not necessary
q It is better to reason about the deficiency in logic

through testing
qOne can look at the reasoning shown by the LLM as it

analyzes
qOne can also ask for extensive inline documentation
qOften inspecting the documentation can lead to

understanding the deficiency in logic
q If one can, debugging the prompt is better

24

25

More Observations about Code generation

qI found it easier to abandon working code when I thought of a
better approach

qExperimented with four different ways of implementing before
settilng down on the current one

qWith every iteration the code got cleaner and smaller

25

26

More Observations about Code generation

qI found it easier to abandon working code when I thought of a
better approach

qExperimented with four different ways of implementing before
setting down on the current one

qWith every iteration the code got cleaner and smaller

26

27

More Observations about Code generation

qI found it easier to abandon working code when I thought of a
better approach

qExperimented with four different ways of implementing before
setting down on the current one

qWith every iteration the code got cleaner and smaller

27

28

More Observations about Code generation

qI found it easier to abandon working code when I thought of a
better approach

qExperimented with four different ways of implementing before
setting down on the current one

qWith every iteration the code got cleaner and smaller

With plenty of inline comments in the code and preserved
prompts I have almost complete specification of the code

Excellent for maintenance

28

29
29

q It all started with MCFM, a Monte Carlo code that gives predictions for a wide range of
processes at hadron colliders

q It needs to be integrated into a new framework Pepper which is a GPU based code
developed to handle the next generation of computational work for the colliders

qPepper is written in C++ and aims to obtain performance portability with Kokkos

qMCFM is Fortran – scientists want it converted to C++

qMCFM has nearly 500 source files spread across multiple directories, with around 50-200
lines per file. Most files fit within the LLM context window

qhttps://neucol.github.io/pages/software

Use-case 2 – Code Translation

30
30

q All of this was happening when ChatGPT had just started making waves, and we decided
it would be worth exploring code translation as a use case

q It starting with cutting and pasting code snippets of mostly arithmetic into the chat window
and asking for translation
Ø Turned out the translation was syntactically correct

q But translation is not about only syntax, and code is not just arithmetic
Ø We clearly needed more

q We also thought scripting can be a part of the solution, along with a human in the loop
feature

Initial Exploration

31
31

Initial Exploration

What resulted from the desire to do code translation without the need to
understand the code, and to do it rapidly is CodeScribe

q All of this was happening when ChatGPT had just started making waves, and we decided
it would be worth exploring code translation as a use case

q It starting with cutting and pasting code snippets of mostly arithmetic into the chat window
and asking for translation
Ø Turned out the translation was syntactically correct

q But translation is not about only syntax, and code is not just arithmetic
Ø We clearly needed more

q We also thought scripting can be a part of the solution, along with a human in the loop
feature

32
32

Overview of The Code Translation Task

q The code is organized into a directory structure shown above

q Tests (a subset of Production Applications) that provide coverage for all sections of the code
can be used as the test-suite to ensure correctness for any refactoring of the code

q Tests are the reason why CodeScribe became a viable solution

33
33

Example of Fortran module conversion to
C++ headers and source.

34
34

Example of FORTRAN subroutine conversion to C++.

35
35

Our Approach – A Step-by-step Process

q Determine small groups of modules and data structures that are interdependent on one
another but independent of the source code otherwise

q Develop prompts to teach LLM the rules for conversion from Fortran to C++

q Write corresponding Fortran-C-API to integrate the generated code with the application
which still has a lot of Fortran code

q Run the relevant portion of the test-suite

q Debug manually and/or refine prompts

36
36

Our Approach – A Step-by-step Process

q Determine small groups of modules and data structures that are interdependent on one
another but independent of the source code otherwise

q Develop prompts to teach LLM the rules for conversion from Fortran to C++

q Write corresponding Fortran-C-API to integrate the generated code with the application
which still has a lot of Fortran code

q Run the relevant portion of the test-suite

q Debug manually and/or refine prompts

37
37

akashdhruv/CodeScribe

Tool Developed For Conversion -- CodeScribe

A customized Python engine to experiments with different approaches for code conversion and
test performance of different models.

38
38

Index command

q Maps the source tree by analyzing file hierarchies,
dependencies, and constructs, creating YAML files for
efficient navigation

q YAML files store metadata and are compiled into an
inverse dictionary to support accurate code queries

q The Index command prevents LLM hallucinations by
providing a structural map to guide accurate code
translation that is used as a RAG database

39
39

Inspect command and TOML Chat completion Templates

q Enables interactive queries about source code.

q This command is used to build the chat
completion templates:

Ø User starts with describing the rules of
conversion and then provides a dummy
example of the source code

Ø Assistant provides syntactically correct code

Ø User appends the actual source code which
is then passed on the LLM to complete the
conversation as the assistant

This is useful for identifying patterns in files and building chat completion
prompts for different patterns

40
40

41
41

DRAFT command

q Creates a file specific prompt
for LLM consumption.

q Created file has ”scribe”
suffix.

q Basic types and

multidimensional arrays are
converted from Fortran to C++.

q YAML Index files are used to
provide context about the use
of external functions.

q Provides additional datapoint
to LLM by doing trivial code
conversions

42
42

43
43

44
44

Translate command

q Translation uses a chat template seed prompt,
appending source and draft code to produce
converted code

q The LLM outputs the C++ source and Fortran-C
interface enclosed within, saving them as
filename.cpp and filename_fi.f90

q Interaction with the LLM uses APIs, local
models, or manual JSON-based copy-pasting, as
outlined in the Inspect command

A. Dhruv and A. Dubey, “Leveraging Large Language Models for
CodeTranslation and Software Development in Scientific
Computing,”Proceedings of PASC-25
https://dl.acm.org/doi/abs/10.1145/3732775.3733572
On arXiv : doi: 10.48550/arXiv.2410.24119.

https://dl.acm.org/doi/abs/10.1145/3732775.3733572
https://doi.org/10.48550/arXiv.2410.24119

45
45

Model Sensitivity Study

qCodeLlama-7B and Mistral-7B required
significant manual review and testing

qGPT-3.5 Turbo and GPT-4o demonstrated
strong adherence to chat template,
reducing developer time

qOverall, GPT-4o delivered the best
performance due to its high parameter
count and multi-step reasoning capabilities

The time shown in the figure is the time for
developer review and testing per file. Higher
times reflect less correct code, and therefore
more iterations for getting to correct code

46
46

Excellent Results – significant time saved in translation

Observations About Code Translation

q Pure syntactical conversion is almost 100% right, not so much the whole code

q Models with high parameter count (~trillion) and multi-step reasoning capabilities are
desirable for these tasks

q Model fine-tuning can potentially alleviate a lot of issues for low parameter count
models. Fine-tuning is a common practice for application specific LLM use

q Ramp-on methodology – wholesale conversions almost always wrong and difficult to
analyze

Ø A related question -- how can people be trained to use tools effectively?

47
47

CONCLUSIONS

q LLMs have a great deal of promise in coding related tasks

q A judicious combination of scripts, LLMs and human-in-the-loop have already
helped in reducing tedious tasks

q They are still very far from being reliable assistants for non-trivial coding on their
own

q We have had no luck so far with code refactoring – explaining the full context of the
existing code has been too difficult so far

