
Practical Software Citation for Research Software Developers, Maintainers and
Users
Date: 4 June 2025
Presented by: Stephan Druskat (German Aerospace Center (DLR), Institute of Software
Technology)

(The slides are available via the link in the page's sidebar.)

Q: CFF question: the date-released is for the current version or for the initial release, or
the initial commit ??

A: date-released is for the current version (i.e., the latest release). Whenever you
are planning to make a release, the value should be updated to reflect the actual
release date.

Q: There are websites for publishing data, e.g.
https://radar.kit.edu/radar/en/dataset/zYYmSEIWMwoELRCK#. Is it a good idea to use
these resources? Of course we already know about github for publishing codes.

Audience notes: Google Code: Why GitHub is not a publication platform

A: Generally, there is nothing wrong with publishing software artifacts to repositories
that have been originally set up for data. But there are some prerequisites:

- The repository should agree that it’s okay to publish software there as well (there
may be documentation/guidelines around this)

- The repository should provide a metadata schema that supports software
publications. This means that:

1. It should provide at least one specific type for software (where type is the
type of publication, e.g., article, thesis, data, …)

2. It should provide the fields that you’d want to see for the publication of a
software version (importantly, a version field)

3. It should provide software licenses (in addition to text/data licenses, such
as Creative Commons licenses) to choose from. CC licenses aren’t
suitable for software, and hence you want to be able to pick the software
license for your software for the publication. Examples include Open
Source Initiative-approved licenses.

https://ideas-productivity.org/events/hpcbp-091-software-citation
https://ideas-productivity.org/events/hpcbp-091-software-citation
https://github.com/citation-file-format/citation-file-format/blob/1.2.0/schema-guide.md#date-released
https://radar.kit.edu/radar/en/dataset/zYYmSEIWMwoELRCK#
https://opensource.org/licenses
https://opensource.org/licenses

4. It should ideally provide some way of linking different versions of the same
software to reflect that these are versions of the same “thing”, not different
things. This could be the possibility to record DataCite relations between
versions in the metadata, or the creation of one identified set of metadata
for the project (e.g., the concept DOI in Zenodo, whose metadata contains
a list of all versions (using the DataCite relation hasVersion (example)).

To Michael’s comment on Google Code: Yes, the disappearance of Google Code is one
very good example why making your source code publicly available is NOT the same as
software publication. In the case of Google Code, the Software Heritage Archive
thankfully stepped in

To Alfred’s mention of a specific (data) repository: It does already contain software (see,
e.g., this version of openCARP), and the openCARP team have also built a tool to
automate publication on RADAR (somewhat similar to HERMES). However, you can
see that this repository doesn’t seem to fully support software publications. If you
compare the metadata with the Zenodo metadata for a version of another software:

Metadata Zenodo RADAR

Resource type
(resourceTypeGeneral)

Software Software

Resource type declared on website Software Dataset

License (see rightsList) OSI-approved, SPDX-identified
software license (Apache-2.0)

1. “Open Access” (not applicable to
software)
2. “Other” (lists Academic Public
License on website, not in SPDX
license list)

Version identifier (e.g., 1.4.2, 16.0) Recorded in version field Not recorded (inserted into title)

Version linking Yes (via metadata field and
DataCite relation isVersionOf)

No, each version is treated as
separate publication

I think you can see why not having the correct metadata schema can be problematic for
human users, and machines alike. If I wanted to identify the software publications in a
repository, and how they are connected, I’d have a better time with one repo than with
the other.

Q: What are the other good software journals (besides JOSS), especially for OSS?

https://support.datacite.org/docs/connecting-to-works#summary-of-all-relationtypes
https://api.datacite.org/dois/10.5281/zenodo.6900689
https://www.softwareheritage.org/2016/09/01/google-code-content-now-safely-collected-in-software-heritage/
https://www.softwareheritage.org/2016/09/01/google-code-content-now-safely-collected-in-software-heritage/
https://radar.kit.edu/radar/en/dataset/3k23ep4qffdze09u.openCARP%2B%2528v16.0%2529
https://facile-rs.readthedocs.io/en/latest/
https://hermes.software-metadata.pub/en/latest/
https://api.datacite.org/dois/10.35097/3k23ep4qffdze09u
https://api.datacite.org/dois/10.5281/zenodo.6900689
https://spdx.org/licenses/

Audience notes: SoftwareX (Elsevier’s public software journal), JOSS is great, for
imaging - , pyOpenSci also peer reviews software (and partners with JOSS) to provide a
paper: https://www.pyopensci.org/, domain-specific journals such as ACM Transactions
on Mathematical Software

A: The Software Sustainability Institute maintains a list of journals where you can
publish software (and also where you can “publish software”). Some of them do actual
reviews of the software itself, some accept papers about software. I’ll highlight

- For open source software: Journal of Open Research Software (specifically their
Software Metapapers track)

- For image processing software: IPOL Journal - Image Processing Online

I still stick to my argument that “software journals” - and particularly the outstanding
JOSS, the Journal of Open Source Software - do great work in solving some problems
in software publication (organizing peer review, supporting the archival and identification
process, providing a “semantic bridge” in calling themselves journals (which is what
management understands)), but they are unfit (by design) to solve others (regularly
publishing versions). Some aspects they help with, but are fundamentally not ideal, e.g.,
highlighting the importance of software by writing a descriptive paper (however short)
that has to go with the source code. As such, I think software journals are a great
“bridge technology”, but the optimum lies somewhere between software journals and
repository-based publishing. The one big issue we need to solve is peer review, i.e.,
quality assurance for each version.

Q: What is your experience and advice for citing contributors whose contributions are
often not captured by git commits, such as those who contribute to requirements,
analysis, and design?

Audience notes: Is https://credit.niso.org/ (CRedIT Taxonomy) relevant?

A: There are different options for this. The AllContributors specification and tooling
focuses on the issue of non-code-pushing contributors specifically. They cover many
roles for community work, ideation, etc. IMHO, you can’t go wrong with using these
specs to document contributions in the source code repo.

On another level, it should be possible for contributors of “non-git-committers” to qualify
for authorship. This is why it is important for research software projects to think about
authorship, who qualifies for it, the criteria, etc. As mentioned, we’re collaborating in the
ReSA Task Force Software Authorship & Contribution to develop guidance around
software authorship, and will invite the community to review it and provide input.

https://www.pyopensci.org/
https://www.software.ac.uk/
https://www.software.ac.uk/top-tip/which-journals-should-i-publish-my-software
https://openresearchsoftware.metajnl.com/
https://openresearchsoftware.metajnl.com/about/submissions#software-metapapers
https://www.ipol.im/
https://joss.theoj.org/
https://credit.niso.org/
https://allcontributors.org/
https://www.researchsoft.org/tf-authorship-contribution/

For more “formally” recognizing and acknowledging contributors in addition to authors,
e.g., in publication metadata, it should be possible to record them in a specified field
(the next version of the Citation File Format will include a contributors field for this,
CodeMeta also includes such a field via Schema.org), and these metadata should also
be recorded in the publication repos. E.g., Zenodo does have a field “contributors”
backed by a controlled vocabulary, but (just like the CRedIT taxonomy mentioned
above) is high-level and does not allow you to specify software-specific roles.

Q: How does this apply to dynamic software? My package works on a plugin system.
Citing the framework doesn’t give the plugin creator proper credit. Citing all plugins that
are used could conceivably lead to hundreds of citations.

Audience note: Some systems based on plugins provide the means for the plugins to
report their own preferred citations, for example as a command-line option.

A: Good question. There is an underlying question here about how we define and
understand software as an object, and where we identify its boundaries. Is something
“in” software A or not “in” software A? Are dependencies part of “the software”? Do we
talk about source code, binaries, or runtime? Etc.

I think that this is ultimately not a question that “software citation” needs to solve, it’s an
issue of the academic system as such. Why is hundreds of citations a problem?
Technically it’s not (we don’t count them by hand, PDFs can hold many citations and
aren’t expensive, etc.). It may become a problem (for the system of citation, credit,
metrics, etc.) where we don’t trust the citation, or rather, the citation intent and intention
by the citer.

Beyond this philosophical discussion, I don’t see plugins as much of a problem. Either
they’re developed “apart” from the framework, then they should have their own citation
metadata, and be cited when used (unless you discuss the whole ecosystem around the
framework, in which case you may want to cite all hundreds of plugins). “Apart”
meaning: in another source code repository, and/or by another set of authors or a
subset of the framework authors, and/or with another roadmap, and/or with separate
documentation, etc. When they’re only technically plugins (i.e., implemented to interface
with the framework via an extension mechanism), but otherwise developed alongside
the framework, they may be a part of the framework (and share the same citation
metadata). I’ve seen and done both.

https://citation-file-format.github.io/
https://codemeta.github.io/terms/

For the concrete case of the question: If a researcher uses, e.g., your and another
plugin within the framework, they should cite your plugin and the other plugin, they may
cite the framework if it is relevant (e.g., for their usage of the plugins, and fo
reproducibility, etc.), but they shouldn’t cite all plugins available for the framework.

Q: Good places to publish codes and data have to persist–meaning that the platforms
should not disappear sometime down the road. If the data and code are included in
citations, you want them to persist. Have any data and code publishing platforms ever
been taken down?

A: Taken down: Not that I know of. Source code repo platforms have disappeared, see
Google Code above. Of course, there are no real guarantees, and diversifying archival
is probably a good idea in these times (and anyway).

For software citation, it is important that the metadata persist. For reproducibility you
also need the source code (and other things). Generally I think it’s a good idea to

- archive your software in the Software Heritage Archive, together with a citation
metadata file (and perhaps other metadata files). This way you can get better
citation and better reproducibility, AND

- publish your software releases in a publication repository, AND
- (slightly unrelated) consider mirroring your source code repos on another

platform (GitHub/GitLab/Forgejo/gitea, etc.)

Q: I do observe that in R package development, the package starts with a blank
template to be filled with with info like Author name and email, Maintainer name and
email, etc! Does that make life easier than earlier?

A: Yes, because it makes you think early on in the process about a few aspects of
authorship and difference between authors and other roles (here: maintainer). It also
gets you started with recording these metadata.

Also no, because you still have to maintain the citation metadata along with your
software, and you also have to decide how to provide the metadata for the citation and
publication cases, and perhaps syncing metadata.

https://archive.softwareheritage.org/
https://citation-file-format.github.io/
https://citation-file-format.github.io/
https://forgejo.org/
https://about.gitea.com/

