
Strengthening Development Workflows by Graphically Communicating Elements
of Software Design
Date: 12 June 2024
Presented by: Rafael Mudafort (National Renewable Energy Laboratory)

(The slides are available via the link in the sidebar of the page linked above.)

A related book recommendation from the audience (Juan Espinoza):
The best reference for model-based software engineering is Steve Tockey's
textbook How to Engineer Software: A Model-Based Approach, in Amazon:
https://www.amazon.com/How-Engineer-Software-Model-Based-Approach/dp/11
19546621

Q: Can UML be used to model new features of C++ like concepts or modules?

A: Possibly, but I’m not aware of any specific UML features for language features specific to
C++. I say “possibly” because there is a mechanism for extending the UML, and this is where
SysML that I mentioned fits it. It’s an extension to the standard UML models to support models
specific to systems engineering. I also heard of another UML extension for cyber security.
However, I couldn’t find anything for C++ language features in a quick web search.

Q: Are there any code metrics that can be computed from UML?

A: UML itself is a set of language constructs, so UML can’t compute code metrics directly.
However, there are a number of tools available to create UML diagrams through a static code
analysis, and this process could provide some code metrics. Something like the depth of a
particular object hierarchy (to go back to an example in the talk) could be determined by a static
code analysis. My guess is most of the tools that produce UML diagrams from static code
analysis do so with an abstract syntax tree. Of course, any kind of run-time metrics will require
profiling tools.

Q: How does documentation of requirements fit into the document-driven process? The
emphasis is on design, but at least rough requirements should proceed this. How could
traceability between the requirements and design be handled? Likely changes should be
documented before starting the design, since they govern the design.

A: In my opinion, the identification and communication of requirements is intrinsic to
documentation driven design or documentation driven development. It’s usually important to
know what you need to do before you start doing something. The type of diagramming and
documentation that I mentioned here is really directed at software architecture, so defining

https://ideas-productivity.org/events/hpcbp-084-communicatingdesign
https://ideas-productivity.org/events/hpcbp-084-communicatingdesign
https://www.amazon.com/How-Engineer-Software-Model-Based-Approach/dp/1119546621
https://www.amazon.com/How-Engineer-Software-Model-Based-Approach/dp/1119546621


requirements should probably be done prior to thinking about the architecture. In fact, I shared
an anecdote where my lack of defining the requirements led to an architecture that was exactly
wrong for the way the software was ultimately used. And I completely agree that changes
should be documented before starting the design especially because they’ll nearly always
influence the design.
The question on traceability between requirements and design is a good one. I wonder if
somehow this could be captured through the sort of diagrams I mentioned today. As in, maybe
careful selection of perspective in diagrams would allow for visually communicating
requirements.

Q: What advice does Rafael have on design principles to use? Composition over inheritance?
Recommended design patterns?

A: I’m hesitant to recommend any specific design principles to follow because I think these tend
to go in and out of style. Even in my own mind I tend to vacillate on these types of questions like
composition vs inheritance (though I’ve been on the side of composition for a few years now).
Instead, I recommend to create a design process. Think about how you’re moving through the
design of your system: How are you incorporating requirements? Do you have a parti? How will
you verify that your design has done what you intended? In my experience, building a strong
design process enables building a strong design, and then questions of one pattern over
another are less relevant than questions of achieving the objectives of your specific project.

Q. What tool did you use to draw the diagrams (especially the sequence diagrams)?

A. I used Mermaid in combination with pyreverse for nearly all of the class diagrams in this
talk. I created the sequence diagrams manually using Mermaid.

Q. Did you have to configure/tell your GitHub environment to use Mermaid to render the
diagrams (in screen space)?

A. No, any GitHub product that uses GitHub flavored Markdown supports rendering
Mermaid diagrams. See this GitHub blog post.

Q. Will these tools work with code that uses mixed language programming - so a mix of
C++/C/Fortran with calls to external libraries?

A. Doxygen does work with a combination of C / C++ / Fortran. Pyreverse is
Python-specific, and I’m not sure how it would respond if you somehow integrate another
language such as through an extension. That being said, most language ecosystems
seem to have their analogous tools for this.

Q. What is the incentive for researchers to communicate their research well to non-experts?

https://mermaid.js.org
https://pylint.readthedocs.io/en/latest/pyreverse.html
https://github.blog/2022-02-14-include-diagrams-markdown-files-mermaid/


A. This is a big question, and there’s probably a lot to be said here. Instead of answering as
a researcher, in general, I’ll take it specifically as a research software engineer working
at a National Lab with many colleagues who are closer to the domain in which our
software is used. From that perspective, the viability of my career path is dependent on
my communication about my work. Since most people in science and engineering are at
least somewhat familiar with programming, I think it’s easy to trivialize software design.
However, writing a simple script to do some algebra and make some plots is an entirely
different thing than creating an elegant software system that meets a set of
requirements. It’s important for us to communicate the things we’ve done that add value
to the research environment so that our colleagues and managers understand it and can
incentivize it. Without this, the RSE career path has limited growth potential and talented,
experienced software engineers move on to other industries. I see this as a fundamental
issue in research, at the moment, and one that can be solved by simply communicating
more. I can’t expect my colleagues to understand the design of a system that I created
unless I tell them. Similarly, I can’t expect my colleagues to understand the value of my
work unless I tell them. This is the same thing we do with other products of research
such as citation metrics for academic publications.
This doesn’t address the incentive to get your work to people who can make use of it.
For me, that’s another very strong incentive. Personally, I like to produce software as a
means to an end - the end is wind energy production. I’m motivated to make my work
more accessible so that companies creating wind turbines and developing wind energy
projects will use my work to improve their products and ultimately help in the transition to
renewable energy.

Q. Can you elaborate on how receptive your management and your “customers”/colleagues
have been to your use of these tools?

A. My manager also has a strong computational background and has done his fair share of
software development, so he sees the value in whatever method of communication
supports our software development. My manager’s manager probably has not seen my
use of diagrams :) I think most of my colleagues, though, are generally appreciative of
visual communication about software design since it really eases the burden on them
when they need to understand my work.

Q. To what extent do you use these tools when writing up your research? Do you see them as
only useful for "software" papers or are they also useful for domain science publications?

A. I primarily use these tools in software related products such as documentation site,
GitHub, even within the source code. For scientific publications, I’ve historically not used
these tools because I don’t find their outputs very pretty. However, I’ve been making an
effort to understand the styling and configurations available in Mermaid, and I
coincidentally did include Mermaid diagrams in a recent paper and conference poster.

A suggestion from the audience (Jason Gates):



For generating these types of diagrams for the sake of publication, use LaTeX + tikZ.


