### GETTING IT RIGHT: SYSTEM TESTING OF SCIENTIFIC SOFTWARE

Myra Cohen

https://www.cs.iastate.edu/~mcohen

mcohen@iastate.edu





Laboratory for Variability-Aware Assurance and Testing of Organic Programs LaVA-OPs

### Scientific Software is Everywhere



Feature

Home About - Research - News Training - Library

### EXAFEL AND COPA: RAPID IMAGING OF MOLECULAR SYSTEMS

Using CoPA tools, ExaFEL prevents computational data throughput from bottlenecking experimental progress in x-ray free electron laser facilities. Source: ECP



#### EXAALT AND KOKKOS: MAKING EXASCALE SIMULATIONS OF MATERIAL BEHAVIOR A "SNAP"

Molecular dynamics has become a cornerstone of computational science and is a key component of developing materials with enhanced properties.

Source: ECP



#### EXASCALE COMPUTING PROJECT SOFTWARE HELPS LAUNCH A NEW ERA FOR NASA

ECP Software Helps Launch a New Era for NASA

Source: ECP



#### EXASCALE COMPUTING PROJECT CONTRIBUTES TO ACCELERATING CANCER RESEARCH

The Exascale Computing Project's CANDLE application will improve cancer research techniques and clinical outcomes

Source: ECP

Error: NCBI C++ Exception:

T0 "/tmp/BLAST/2.11.0/gompi-2020b/ncbi-blast-2.11.0+-src/c++/src/serial/objistrasnb.cpp" T0 "/tmp/BLAST/2.11.0/gompi-2020b/ncbi-blast-2.11.0+-src/c++/src/serial/member.cpp", li

Error: NCBI C++ Exception:

T0 "/tmp/BLAST/2.11.0/gompi-2020b/ncbi-blast-2.11.0+-src/c++/src/serial/objistrasnb.cp; T0 "/tmp/BLAST/2.11.0/gompi-2020b/ncbi-blast-2.11.0+-src/c++/src/serial/member.cpp", l

ial/objistrasnb.cpp", line 499: Error: (CSerialException::e0verflow) byte 132: overf ial/member.cpp", line 767: Error: (CSerialException::e0verflow) ncbi::CMemberInfoFur

NCBI blastp bug - changing max\_target\_seqs returns incorrect top hits

••• 2015-11-30-blastp-bug.md

NCBI blastp seems to have a bug where it reports different top hits when -max\_target\_seqs is changed. This is a serious problem because the first 20 hits (for example) should be the same whether -max\_target\_seqs 100 or -max\_target\_seqs 500 is used.

The bug is reproducible on the command line when searching NCBI's nr blast database (dated 25-Nov-2015) using NCBI 2.2.28+, 2.2.30+ and 2.2.31+.

Raw

NCBI blastp bug - changing max\_target\_seqs returns incorrect top hits

### O 2015-11-30-blastp-bug.md

NCBI blas problem I 500 is us

The bug 2.2.28+, *Bioinformatics*, 35(9), 2019, 1613–1614 doi: 10.1093/bioinformatics/bty833 Advance Access Publication Date: 24 September 2018 Letter to the Editor

Sequence analysis

### Misunderstood parameter of NCBI BLAST impacts the correctness of bioinformatics workflows

### Nidhi Shah<sup>1</sup>, Michael G. Nute<sup>2</sup>, Tandy Warnow ()<sup>3</sup> and Mihai Pop ()<sup>1,\*</sup>

<sup>1</sup>Department of Computer Science, University of Maryland College Park, MD 20742, USA, <sup>2</sup>Department of Statistics and <sup>3</sup>Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA

\*To whom correspondence should be addressed. Associate Editor: John Hancock Contact: mpop@umd.edu Received and revised on August 13, 2018; editorial decision on September 19, 2018; accepted on September 21, 2018

6

Raw

serious

et\_seqs

g NCBI

OXFORD

### Sometimes it seems to fail..

Bioinformatics, 35(15), 2019, 2699–2700 doi: 10.1093/bioinformatics/bty1026 Advance Access Publication Date: 24 December 2018 Letter to the Editor

Sequence analysis

### Reply to the paper: Misunderstood parameters of NCBI BLAST impacts the correctness of bioinformatics workflows

Thomas L. Madden\*, Ben Busby and Jian Ye

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

\*To whom correspondence should be addressed. Associate Editor: John Hancock **Contact:** madden@ncbi.nlm.nih.gov Received and revised on November 30, 2018; editorial decision on December 10, 2018; accepted on December 19, 2018

### Sometimes it seems to fail..

### Dear Editor,

A recent letter by <u>Shah *et al.* (2018)</u> addressed the use of a command-line parameter in BLAST (<u>Altschul *et al.*</u>, 1997; <u>Camacho *et al.*</u>, 2009). BLAST is a very popular tool, so it is not surprising that this topic has provoked a great deal of interest. The authors have, however, conflated three different issues. One is a bug that will be fixed in the BLAST+ 2.8.1 release due out in December 2018, another is simply how BLAST works and the third might be viewed as a shortcoming of our implementation of composition-based statistics (CBS). Here, we address these issues and describe some new documentation about the BLAST process.

<u>Shah et al. (2018)</u> did not provide their own example in the letter, but later provided one at <u>https://github.com/shahnidhi/BLAST\_maxtargetseq\_analysis</u>. At the NCBI, we examined the new example and it became clear that the demonstrated behavior was a bug, resulting from an overly aggressive optimization, introduced in 2012 for BLASTN and MegaBLAST (DNA–DNA alignments). This bug has been fixed in the BLAST+ 2.8.1 release, due out in December 2018. The aberrant behavior seems to occur only in alignments with an extremely large number of gaps, which is the case in the example provided by Shah and collaborators.

# Cost of Poor Quality Software

- CISQ Consortium for Information & Software Quality 2020 report
   \$2.08 trillion cost in United States
- 2002 National Institutes of Standards and Technology Up to \$59 Billion per year in United States
- Scientific Software
  - ?

# Why Test Software?

# contributed articles

eck for dates

#### DOI:10.1145/2667219

Dynamic analysis techniques help programmers find the root cause of bugs in large-scale parallel applications.

BY IGNACIO LAGUNA, DONG H. AHN, BRONIS R. DE SUPINSKI, TODD GAMBLIN, GREGORY L. LEE, MARTIN SCHULZ, SAURABH BAGCHI, MILIND KULKARNI, BOWEN ZHOU, ZHEZHE CHEN, AND FENG QIN

Debugging High-Performance Computing Applications at Massive Scales



### Why Test Software?

### contributed articles

#### DOI:10.1145/3382037

An approach to reproducibility problems related to porting software across machines and compilers.

BY DONG H. AHN, ALLISON H. BAKER, MICHAEL BENTLEY, IAN BRIGGS, GANESH GOPALAKRISHNAN, DORIT M. HAMMERLING, IGNACIO LAGUNA, GREGORY L. LEE, DANIEL J. MILROY, AND MARIANA VERTENSTEIN

Keeping Science on Keel When Software Moves the machine instructions that actually get executed. Unfortunately, such changes do affect the computed results to a significant (and often worrisome) extent. In a majority of cases, there are not easily definable a priori answers one can check against. A programmer ends up comparing the new answer against a trusted baseline previously established or checks for indirect confirmations such as whether physical properties such as energy are conserved. However, such non-systematic efforts might miss underlying issues, and the code may keep misbehaving until these are fixed. In this article, we present real-world

evidence to show that ignoring numerical result changes can lead to misleading scientific conclusions. We present techniques and tools that can help computational scientists understand and analyze compiler effects on their scientific code. These techniques are applicable across a wide range of examples to narrow down the root-causes to single files, functions within files, and even computational expressions that affect specific variables. The developer may then rewrite the code selectively and/or suppress the application of certain optimizations to regain more predictable behavior.

Going forward, the frequency of required ports of computational software will increase, given that performance gains can no longer be obtained by mereIn this article, we present real-world evidence to show that ignoring numerical result changes can lead to misleading scientific conclusions. We present tech-





hen hackers leaked thousands of e-mails from the Climatic Research Unit (CRU) at the University of East Anglia in Norwich, UK, last

year, global-warming sceptics pored over the documents for signs that researchers had manipulated data. No such evidence emerged, but the e-mails did reveal another problem one described by a CRU employee named "Harry", who often wrote of his wrestling matches with wonky computer software.

"Yup, my awful programming strikes again," Harry lamented in one of his notes, as he attempted to correct a code analysing weatherstation data from Mexico.

Merali, Zeeya. "Computational Science: ...Error." Nature 467, no. 7317 (Oct, 2010): 775–77

## Overview













Types of Testing

Challenges

Models

Coverage

Oracles

Configurability

# What is Testing





## What Should We Test?





# What Should We Test?



Unit tests are important, but there is more....



### Limitations

### Testing can only show the presence of faults. It cannot determine their absence.



Edsger W. Dijkstra



# Challenge 1

- To detect a program FAILURE we need to:
  - Reach a FAULT in the code
  - Infect the code (change to incorrect state) ERROR
  - Propagate the error out of program
  - Reveal (detect) the error (ORACLE)

RIPR model Ammann, Offutt (Introduction to Software Testing, 2016)



# Challenge 2

- Covering code during testing, only tests the logic that is there!
  - Also need to test from the system does the software meet the specifications



### **Tests Can Miss Faults** def classify\_triangle(a, b, c): # Sort the sides so that a <= b <= c</pre> if a > b: tmp = aa = tmp #fault should be a=b $b = \tau m p$ if a > c: tmp = aa = c c = tmpif b > c: tmp = bb = c c = tmpif a + b <= c: return TriangleType.INVALID elif a == b and b == c: return TriangleType.EQUILATERAL elif a == b or b == c: return TriangleType.ISOSCELES else: return TriangleType.SCALENE



### **Tests Can Miss Faults**



- 1. Test Case 3, 4, 5 (scalene)
  - doesn't reach fault

X



### **Tests Can Miss Faults**

| def | <pre>classify_triangle(a, b, c): # Sort the sides so that a &lt;= b &lt;= c</pre> |
|-----|-----------------------------------------------------------------------------------|
| ſ   | if a > h:                                                                         |
|     |                                                                                   |
|     | 2 - tmp #fault should be a-b                                                      |
|     |                                                                                   |
|     | $  b = tmp = \frac{5,5,1}{2}$                                                     |
|     |                                                                                   |
|     | 1† a > c:                                                                         |
|     | tmp = a                                                                           |
|     | a = c                                                                             |
|     | c = tmp                                                                           |
|     |                                                                                   |
|     | if b > c:                                                                         |
|     | tmp = b                                                                           |
|     | b = c                                                                             |
|     | c = tmp                                                                           |
|     |                                                                                   |
|     | if a + b - c                                                                      |
|     |                                                                                   |
|     | return TriangleType.INVALID                                                       |
|     | elif a == b and b == c:                                                           |
|     | return TriangleType.EQUILATERAL                                                   |
|     | elif a == b or b == c:                                                            |
|     | return TriangleType.ISOSCELES                                                     |
|     | else:                                                                             |
|     | return TriangleType.SCALENE                                                       |

- 1. Test Case 3, 4, 5 (scalene)
  - doesn't reach fault
- 2. Test Case 5, 1, 1 (invalid)
  - reaches fault and infects
  - reveals (returns isosceles)



X



### **Tests Can Miss Faults**

| def | <pre>classify_triangle(a, b, c):     # Sort the sides so that a call b call.</pre> |
|-----|------------------------------------------------------------------------------------|
| ſ   | if $a > b$ :                                                                       |
|     | tmp = a                                                                            |
|     | <pre>a = tmp #fault should be a=b</pre>                                            |
|     | b = tmp 2,2,-1                                                                     |
|     |                                                                                    |
|     | if a > c:                                                                          |
|     | tmp = a                                                                            |
|     | a = c                                                                              |
|     | c = tmp                                                                            |
|     |                                                                                    |
|     | if b > c:                                                                          |
|     | tmp = b                                                                            |
|     | b = c                                                                              |
|     | c = tmp                                                                            |
|     |                                                                                    |
|     | if a + b <= c:                                                                     |
|     | return TriangleType.INVALID                                                        |
|     | elif a == b and b == c:                                                            |
|     | return TriangleType.EQUILATERAL                                                    |
|     | elif a == b or b == c:                                                             |
|     | return TriangleType.ISOSCELES                                                      |
|     | else:                                                                              |
|     | return TriangleType.SCALENE                                                        |

- 1. Test Case 3, 4, 5 (scalene)
  - doesn't reach fault
- 2. Test Case 5, 1, 1 (invalid)
  - reaches fault and infects
  - reveals (returns isosceles)

### 3. Test Case 2, 1, -1 (invalid)

- reaches fault and infects
- Doesn't propagate (2, 2,-1) is still INVALID



X

| kbase-all-hands-on       v1 - KBaseFBA.FBA-13.2 | xes Genes Bioma        | ss Pathways Barcharts                                       | 斉                                                                    |  |  |  |
|-------------------------------------------------|------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
|                                                 | myracohen:narrative_15 | kbase-all-hands-on-differe           v2 - KBaseFBA.FBA-13.2 | nt-media                                                             |  |  |  |
| Object type                                     | KBaseFBA.FBA-13.2      | Overview Reaction fluxes                                    | Exchange fluxes Genes Biomass Pathways Bar charts                    |  |  |  |
| Owner<br>Version                                | myracohen<br>1         | ID                                                          | myracohen:narrative_1501886992034/kbase-all-hands-on-different-media |  |  |  |
| Mod-date                                        | 2024-02-26T06:15:44+0  | Object type                                                 | KBaseFBA.FBA-13.2                                                    |  |  |  |
| Objective value                                 | 0.507834               | Owner                                                       | myracohen                                                            |  |  |  |
| Model                                           | E-Coli_k12_MG1         | 0                                                           | 2                                                                    |  |  |  |
| Media                                           | Carbon-D-Glucose       |                                                             | 2024-02-26T06:36:45+0000                                             |  |  |  |
| Single KO                                       | 0                      |                                                             | 13.4555                                                              |  |  |  |
| Number reactions                                | 857                    | Model                                                       | E-Coli_k12_MG1                                                       |  |  |  |
| Number compounds                                | 29                     | Media                                                       | Complete                                                             |  |  |  |
| Gene KO                                         | 0                      | Single KO                                                   | 0                                                                    |  |  |  |
| Reaction KO                                     | 0                      | Number reactions                                            | 857                                                                  |  |  |  |
| Custom bounds                                   | 0                      | Number compounds                                            | 29                                                                   |  |  |  |
|                                                 |                        | Gene KO                                                     | 0                                                                    |  |  |  |
|                                                 |                        | Reaction KO                                                 | 0                                                                    |  |  |  |
|                                                 |                        | Custom bounds                                               | 0 24                                                                 |  |  |  |
|                                                 |                        |                                                             | 27                                                                   |  |  |  |



# The Future?

, or alternatively, Machine learning (ML) classifiers will select the templates for model reconstruction

### Build and gap-fill genome-scale metabolic models with ModelSEED v2 (MS2)

ModelSEED 2 genome-scale metabolic reconstruction pipeline enabling quantitative prediction of ATP production

A genome annotated with RAST is provided as input. Users can select a template for reconstruction, or alternatively, Machine learning (ML) classifiers will select the templates for mode reconstruction. ATP production is tested across 54 media formulations representing many diverse energy biosynthesis strategies, with gap-filling performed as necessary to ensure ATP is produced in at least one condition. Next, we expand the core metabolism model to the genome-scale. The genome-scale model's gap-filling is then performed using our default auxotrophic medium or an optional user-specified custom media formulation.



### Overview











| ┱┹┯┹┯┫ |
|--------|
|        |

Types of Testing

Challenges

Models

Coverage

Oracles

Configurability



### Models



Provide an abstraction of the software we are testing



Can be for different dimensions of the software (specifications, interface, code)



Allow us to reason about how much we have tested



The foundation for automated test generation



### **Example Models**

### Graphs

Tabular

Relational

Grammar based

Logic based



## **Graph Models**



Program control flow graph



User interface



Program state machine



# Types of Graph Coverage

- All nodes
- All edges (pairs of nodes)
- All length N paths
- M random length N paths

¥ ∎∎∎



### Program Code Coverage





### Program Code Coverage

### Cog coverage: 38.75%

coverage.py v7.2.7, created at 2023-05-29 15:26 -0400

| Module                               | statements | missing | excluded | branches | partial | coverage |
|--------------------------------------|------------|---------|----------|----------|---------|----------|
| <pre>cogapp/initpy</pre>             | 1          | 0       | 0        | 0        | 0       | 100.00%  |
| cogapp/mainpy                        | 3          | 3       | 0        | 0        | 0       | 0.00%    |
| cogapp/cogapp.py                     | 500        | 224     | 1        | 210      | 30      | 49.01%   |
| <pre>cogapp/makefiles.py</pre>       | 22         | 18      | 0        | 14       | 0       | 11.11%   |
| <pre>cogapp/test_cogapp.py</pre>     | 845        | 591     | 2        | 24       | 1       | 29.57%   |
| <pre>cogapp/test_makefiles.py</pre>  | 70         | 53      | 0        | 6        | 0       | 22.37%   |
| <pre>cogapp/test_whiteutils.py</pre> | 68         | 50      | 0        | 0        | 0       | 26.47%   |
| cogapp/whiteutils.py                 | 43         | 5       | 0        | 34       | 4       | 88.31%   |
| Total                                | 1552       | 944     | 3        | 288      | 35      | 38.75%   |

coverage.py v7.2.7, created at 2023-05-29 15:26 -0400

### Triangle.java



Example tools: jacoco, coverage.py, gcov





### **Other Coverage**

## Specification coverage

• Cover the system requirements

### Interaction coverage

- Measure interactions between components
  - Pairs, n-way coverage

### Overview











Types of Testing

Challenges

Models

Coverage

Oracles

Configurability



## What is the Correct Answer?




#### **Trivial Oracles**

Program crashes

Core dump

Segmentation error

Overflow

Program hangs



## **Trivial Oracles**

- Good when we don't have a known result
- Weakest oracle since it only shows that the program fails/not that the result is incorrect
- Exact oracles are easy to compute in some programs





#### Harder Oracles

| MEGA<br>HIT Assemble Reads w<br>Assemble metagenom | with MEGAHIT v1.1.1<br>nic reads using the MEGAHIT assembler. | ↑ ↓ … ⊟                     |
|----------------------------------------------------|---------------------------------------------------------------|-----------------------------|
| Run                                                |                                                               | Configure Job Status Result |
| Input Objects                                      |                                                               |                             |
| Read Library                                       | rhodo.art.q20.PE.reads                                        | *                           |
| Parameters (5 advanced paran                       | neters showing) hide advanced                                 |                             |
| Parameter preset                                   |                                                               | -                           |
| min-count                                          |                                                               |                             |
| k-min                                              | 1≤                                                            | ≤127                        |
| k-max                                              | 1s                                                            | ≤255                        |
| k-step                                             | 1s                                                            | ≤28                         |
| k-list                                             | •                                                             |                             |
| min-contig-len                                     | 300 ≤                                                         | 2000                        |
| Output Objects                                     |                                                               |                             |
| Output Assembly name                               |                                                               | 20                          |





## Making Oracles Hard

- Results may differ by small epsilons (due to rounding)
- Expected result may not be computable without program
- May have time series results
- Takes a long time to manually compute each oracle (even when we can)
- Programs may be stochastic (or non-determinstic)



#### Examples

#### Python docs

**Note:** The behavior of **round()** for floats can be surprising: for example, **round(2.675, 2)** gives 2.67 instead of the expected 2.68. This is not a bug: it's a result of the fact that most decimal fractions can't be represented exactly as a float. See Floating Point Arithmetic: Issues and Limitations for more information.

#### Same growth values?

| Expected: | 0.356951 <mark>24</mark> |
|-----------|--------------------------|
| Observed: | 0.356951 <mark>22</mark> |

#### Correct hits?

| De | scriptions                                                  | Graphic Summary                 | Alignments            | Taxonomy           |              |                |                |            |               |             |               |            |
|----|-------------------------------------------------------------|---------------------------------|-----------------------|--------------------|--------------|----------------|----------------|------------|---------------|-------------|---------------|------------|
| Se | quences pr                                                  | Downlo                          | ad ~                  | S                  | Select       | columi         | ns ⊻ S         | how 1      | 00 🗸 🕜        |             |               |            |
|    | select all 1                                                | 00 sequences selected           |                       |                    | GenBa        | ank            | Graph          | ics [      | Distanc       | e tree of r | <u>esults</u> | MSA Viewer |
|    | Description                                                 |                                 |                       | Scientific<br>Name | Max<br>Score | Total<br>Score | Query<br>Cover | E<br>value | Per.<br>Ident | Acc. Len    | Accession     |            |
|    | Saccharomyce                                                | es pastorianus strain CBS 1483  | chromosome ScXII      |                    | Saccharomyc  | 1040           | 1040           | 100%       | 0.0           | 100.00%     | 1135585       | CP048993.1 |
|    | Saccharomyces cerevisiae strain CEN.PK113-7D chromosome XII |                                 |                       | Saccharomyc        | 1040         | 1040           | 100%           | 0.0        | 100.00%       | 1032974     | CP046092.1    |            |
|    | Saccharomyce                                                | es cerevisiae strain ySR128 chr | omosome XII, complete | sequence           | Saccharomyc  | 1040           | 1040           | 100%       | 0.0           | 100.00%     | 1076801       | CP036478.1 |
|    | Saccharomuco                                                | e corovicioo etrain V160 chrom  | 000mo 19              |                    | Saccharomyc  | 1040           | 1040           | 100%       | 0.0           | 100 00%     | 1061600       | CD033481 1 |



#### Differential testing

#### Metamorphic testing



#### **Differential Testing**



Run same tests using different programs that have the same functionality

run tests with BLAST

run tests with HPC-BLAST

#### **Differential testing**

Challenge is determining equivalency

#### **Metamorphic Testing**





#### Metamorphic testing

Define relations on sets of tests:

e.g. (subtraction)

(1) A-B = C

Create A' (greater than A)

(2) A'-B = C' means C' is greater than C



#### **Metamorphic Testing**



#### Metamorphic testing

Use Domain Knowledge

- e.g. Ocean temperature modeling
- A. Compute predicted temperature
- B. Modify to increase expected temperature

Confirm relation holds

| kbase-all-hands-on<br>v1-KBaseFBA.FBA-13.2 |                        |                                                        | Š (?)                                                                |
|--------------------------------------------|------------------------|--------------------------------------------------------|----------------------------------------------------------------------|
| Overview Reaction fluxes Exchange flu      | xes Genes Biomas       | ss Pathways Bar charts                                 |                                                                      |
| ID                                         | myracohen:narrative_15 | kbase-all-hands-on-different<br>v2 - KBaseFBA.FBA-13.2 | -media                                                               |
| Object type                                | KBaseFBA.FBA-13.2      | Overview Reaction fluxes Exc                           | hange fluxes Genes Biomass Pathways Bar charts                       |
| Owner                                      | myracohen              |                                                        |                                                                      |
| Version                                    | 1                      | ID                                                     | myracohen:narrative_1501886992034/kbase-all-hands-on-different-media |
| Mod-date                                   | 2024-02-26T06:15:44+0  | Object type                                            | KBaseFBA.FBA-13.2                                                    |
| Objective value                            | 0.507834               | Owner                                                  | myracohen                                                            |
| Model                                      | E-Coli_k12_MG1         | Version                                                | 2                                                                    |
| Media                                      | Carbon-D-Glucose       | Mod-date                                               | 2024-02-26T06:36:45+0000                                             |
| Single KO                                  | 0                      | Objective value                                        | 13.4555                                                              |
| Number reactions                           | 857                    | Model                                                  | E-Coli_k12_MG1                                                       |
| Number compounds                           | 29                     | Media                                                  | Complete                                                             |
| Gene KO                                    | 0                      | Sin 1 to                                               | 0                                                                    |
| Pearties KO                                | Carbon-D-              | Glucose <= Complete                                    | 857                                                                  |
|                                            |                        | Number compounds                                       | 29                                                                   |
|                                            | U                      | Gene KO                                                | 0                                                                    |
|                                            |                        | Reaction KO                                            | 0                                                                    |
|                                            |                        | Custom bounds                                          | 0                                                                    |
|                                            |                        |                                                        | 46                                                                   |

#### Overview











Types of Testing

Challenges

Models

Coverage

Oracles

Configurability



## Configurability















| Enter Query S<br>Enter accession<br>gactacga | Sequence<br>number(s), gi(s), or FASTA sequence(s) 🕑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Clear Query subrange 😔                  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| BLAST                                        | Search database Nucleotide collection (nr/nt) using Megablast Show results in a new window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Optimize for highly similar sequences) |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| Max target<br>sequences                      | 100<br>Select the maximum number of aligned sequences to display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| Short queries                                | Automatically adjust parameters for short input sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Expect threshold                             | 10 🕑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| Word size                                    | 28 😋 😡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| Max matches in a query range                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| Scoring Parame                               | sters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| Match/Mismatch<br>Scores<br>Gap Costs        | 1,-2<br>Linear<br>V Linear<br>Evidence: 5 Extension: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| Filters and Mas<br>Filter                    | Existence: 2 Extension: 2<br>Existence: 1 Extension: 2<br>Existence: 0 Extension: 2<br>Existence: 3 Extension: 1<br>Existence: 2 Extension: 1<br>Existence: 3 Extension: 1<br>Existence: 4 Extension: 1<br>Existence: 5 Extension: 1<br>Existence: 5 Extension: 1<br>Existence: 5 Extension: 1<br>Existence: 6 Extension: 1<br>Existence: 7 Extension: 1<br>Existence: 8 Extension: 1<br>Existence: 9 Existence: 9 Ex |                                         |
| Mask                                         | Existence: 1 Extension: 1<br>Mask for lookup table only<br>Mask lower case letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g                                       |



# Configurability

| Firefox File                            | Edit View History Book                                                                                                                                                                    |  |  |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| About Firefox                           | loading page +                                                                                                                                                                            |  |  |  |  |  |
| Preferences                             | Tabs                                                                                                                                                                                      |  |  |  |  |  |
| Services                                | D D A P A A A A A A A A A A A A A A A A                                                                                                                                                   |  |  |  |  |  |
| Hide Firefox<br>Hide Others<br>Show All | General Tabs Content Applications Privacy Security Sync Advanced<br>✓ Open new windows in a new tab instead<br>□ Warn me when closing multiple tabs                                       |  |  |  |  |  |
| Quit Firefox                            | <ul> <li>Warn me when opening multiple tabs might slow down Firefox</li> <li>Don't load tabs until selected</li> <li>When I open a link in a new tab, switch to it immediately</li> </ul> |  |  |  |  |  |
|                                         |                                                                                                                                                                                           |  |  |  |  |  |



#### **MEGAHIT (DNA Assembler)**

- DNA sequenced into small segments (reads)
- Assembly combines reads into longer continuous sequences
- Result is a certain number of *continuous sequences*



M. Cashman, M. B. Cohen, P. Ranjan, R. W. Cottingham, Navigating the Maze: the Impact of Configurability in Bioinformatics Software, *ASE*, 2018

Credit to Mikaela Cashman

| Run                         |                              | Configure Job Status Result |
|-----------------------------|------------------------------|-----------------------------|
| nput Objects                |                              |                             |
| Read Library                | rhodo.art.q20.PE.reads       | •                           |
| arameters (5 advanced param | eters showing) hide advanced |                             |
| Parameter preset            |                              | •                           |
| min-count                   |                              |                             |
| k-min                       | 1≤                           | ≤127                        |
| k-max                       | 1≤                           | ≤255                        |
| k-step                      | 1≤                           | ≤28                         |
| k-list                      | 0                            |                             |
| min-contig-len              | 300 ≤                        | 2000                        |
| Dutput Objects              |                              |                             |
| Output Assembly name        |                              |                             |

| MEGA<br>HIT Assemble Reads with<br>Assemble metagenomic | th MEGAHIT v1.1.1<br>reads using the MEGA | ↑ ↓ … ⊡                     |    |
|---------------------------------------------------------|-------------------------------------------|-----------------------------|----|
| Run                                                     |                                           | Configure Job Status Result |    |
| Input Objects                                           |                                           |                             |    |
| Read Library                                            | rhodo.ar                                  | t.q20.PE.reads              |    |
| Parameters (5 advanced paramet                          | ers showing) hide adv                     | inced                       |    |
| Parameter preset                                        |                                           | •                           |    |
| min-count                                               |                                           |                             |    |
| k-min                                                   | 1≤                                        | ≤127                        |    |
| k-max                                                   | 1≤                                        | ≤255                        |    |
| k-step                                                  | 1≤                                        | <br>≤28                     |    |
| k-list                                                  | 0                                         |                             |    |
| min-contig-len                                          | 300 ≤                                     | 2000                        |    |
| Output Objects                                          |                                           |                             |    |
| Number of continuous                                    |                                           |                             |    |
| sequences                                               | 284                                       |                             |    |
| Configuration                                           | Default                                   |                             | 53 |

|                                      | Configure Job Status Result                                                                                              |   |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---|
| Input Objects                        |                                                                                                                          |   |
| Read Library                         | rhodo.art.q20.PE.reads                                                                                                   |   |
| Parameters (5 advanced para          | ameters showing) hide advanced                                                                                           |   |
| lob Status                           |                                                                                                                          |   |
| 56 [utils.h : 1                      | 261 Real: 0.4915 user: 0.3962 sys: 0.0720 maxrss: 24688                                                                  |   |
| 7 [Sat Mar                           | 24 04:35:57 20181 k-max reset to: 119                                                                                    |   |
|                                      |                                                                                                                          |   |
|                                      | 24 04-25-57 20101 h light 21 00 00 50 70 00 110                                                                          | L |
| 58 [Sat Mar                          | 24 04:35:57 2018] k list: 21,29,39,59,79,99,119                                                                          | l |
| 58 [Sat Mar<br>59 [Sat Mar           | 24 04:35:57 2018] k list: 21,29,39,59,79,99,119<br>24 04:35:57 2018] Extracting solid (k+1)-mers for k = 21              |   |
| 58 [Sat Mar<br>59 [Sat Mar<br>k-list | 24 04:35:57 2018] k list: 21,29,39,59,79,99,119<br>24 04:35:57 2018] Extracting solid (k+1)-mers for k = 21              | J |
| [Sat Mar<br>k-list                   | 24 04:35:57 2018] k list: 21,29,39,59,79,99,119<br>24 04:35:57 2018] Extracting solid (k+1)-mers for k = 21<br>300≤ 2000 |   |
| k-list<br>Output Objects             | 24 04:35:57 2018] k list: 21,29,39,59,79,99,119<br>24 04:35:57 2018] Extracting solid (k+1)-mers for k = 21<br>300≤ 2000 |   |

| HIT Assemble metagenon                 | with MEGAHII VI.<br>nic reads using the MI | I.I<br>EGAHIT assembler. | · · · · ·                   |
|----------------------------------------|--------------------------------------------|--------------------------|-----------------------------|
| Run                                    |                                            |                          | Configure Job Status Result |
| Input Objects                          |                                            |                          |                             |
| Read Library                           | rhodo.                                     | art.q20.PE.read          | 5                           |
| Paramotors (5 advanced param           | notors chowing) bide                       | advanced                 |                             |
|                                        | necers snowing, mue                        | : duvanceu               |                             |
| Parameter preset                       |                                            |                          |                             |
| min-count                              |                                            |                          |                             |
| k-min                                  | 1≤                                         |                          | ≤127                        |
| k-max                                  | 1≤                                         | 119                      | ≤255                        |
| k-step                                 |                                            |                          |                             |
|                                        |                                            |                          | S20                         |
| k-list                                 | 0                                          |                          |                             |
| min-contia-len                         | 300 ≤                                      |                          | 2000                        |
|                                        |                                            |                          |                             |
| Output Objects<br>Number of continuous | s                                          |                          |                             |
| sequences                              | 284                                        | 285                      |                             |
| Configuration                          | Defaul                                     | k-max=119                |                             |

| HIT Assemble metagen       | omic reads using the MEG  | AHIT assembler. |                |                             |
|----------------------------|---------------------------|-----------------|----------------|-----------------------------|
| Run                        |                           |                 |                | Configure Job Status Result |
| Input Objects              |                           |                 |                |                             |
| Read Library               | rhodo.a                   | rt.q20.PE.rea   | ads            | *                           |
| Parameters (5 advanced par | rameters showing) hide ad | vanced          |                |                             |
| Parameter preset           |                           |                 |                | •                           |
| min-count                  |                           |                 | 2              |                             |
| k-min                      | 1≤                        |                 | 21             | ≤127                        |
| k-max                      | 1≤                        | 119             | 141            | ≤255                        |
| k-step                     | 1≤                        |                 | 12             | ≤28                         |
| k-list                     | 0                         |                 |                |                             |
| min-contig-len             | 300 ≤                     |                 |                | 2000                        |
| Output Objects             |                           |                 |                |                             |
| sequences                  | 284                       | 285             | 285            |                             |
| Configuration              | Default                   | k-max=119       | Default-Manual | 5                           |



| HIT Assemble metagenomic          | reads using the MEG          | AHIT assembler. |                | •                    | ÷ U    |
|-----------------------------------|------------------------------|-----------------|----------------|----------------------|--------|
| Run                               |                              |                 |                | Configure Job Status | Result |
| nput Objects                      |                              |                 |                |                      |        |
| Read Library                      | rhodo.a                      | rt.q20.PE.re    | ads            |                      | •      |
| Parameters (5 advanced parameter  | e <b>rs showing)</b> hide ad | Ivanced         |                |                      |        |
| Parameter preset                  |                              |                 |                |                      | •      |
| min-count                         |                              |                 | 2              | 2                    |        |
| k-min                             | 1≤                           |                 | 21             | 21                   | ≤127   |
| k-max                             | 1≤                           | 119             | 141            | 99                   | 255    |
| k-step                            | 1≤                           |                 | 12             | 12                   | ≤28    |
| k-list                            | 0                            |                 |                |                      | г      |
| min-contig-len                    | 300 ≤                        |                 |                |                      | 2 00   |
| Output Objects                    |                              |                 |                |                      |        |
| Number of continuous<br>sequences | 284                          | 285             | 285            | 289                  |        |
| Configuration                     | Default                      | k-max=119       | Default-Manual | k-max=99             |        |

| Run                         |                         |                |     | Configure Job Status | Result |
|-----------------------------|-------------------------|----------------|-----|----------------------|--------|
| nput Objects                |                         |                |     |                      |        |
| Read Library                | rhodo.a                 | rt.q20.PE.read | 5   |                      | •      |
| Parameters (5 advanced para | ameters showing) hide a | dvanced        |     |                      |        |
| Parameter preset            |                         |                |     |                      | •      |
| min-count                   |                         |                | 2   | 2                    |        |
| k-min                       | 1≤                      |                | 21  | 21                   | ≤127   |
| k-max                       | 1≤                      | 119            | 141 | 99                   | ≤255   |
| k-step                      | 1≤                      |                | 12  | 12                   | ≤28    |
| k-list                      | 0                       |                |     |                      |        |
| min-contio-len              | 300 <                   |                |     |                      | 2000   |
| thin contry terr            | 500 2                   |                |     |                      | 1000   |
| Dutput Object<br>Number of  | 284                     | 285            | 285 | 289                  |        |





## **Challenge for Testing**

| Encoding | Format | Cache<br>Level | Closed-<br>Captioning | Network<br>Access |
|----------|--------|----------------|-----------------------|-------------------|
| MPEG     | Audio  | Low            | Yes                   | Yes               |
| RAW      | Video  | Medium         | No                    | No                |
| WAV      | Stream | High           |                       |                   |



# Media Player

| Encoding | Format | Cache<br>Level | Closed-<br>Captioning | Network<br>Access |
|----------|--------|----------------|-----------------------|-------------------|
| MPEG     | Audio  | Low            | Yes                   | Yes               |
| RAW      | Video  | Medium         | No                    | No                |
| WAV      | Stream | High           |                       |                   |



# Media Player

| Encoding | Format | Cache<br>Level | Closed-<br>Captioning | Network<br>Access |
|----------|--------|----------------|-----------------------|-------------------|
| MPEG     | Audio  | Low            | Yes                   | Yes               |
| RAW      | Video  | Medium         | No                    | No                |
| WAV      | Stream | High           |                       |                   |



# Media Player

| Encoding | Format | Cache<br>Level | Closed-<br>Captioning | Network<br>Access |
|----------|--------|----------------|-----------------------|-------------------|
| MPEG     | Audio  | Low            | Yes                   | Yes               |
| RAW      | Video  | Medium         | No                    | No                |
| WAV      | Stream | High           |                       |                   |



## **Testing the Player**

| Encoding | Format | Cache<br>Level | Closed-<br>Captioning | Network<br>Access |
|----------|--------|----------------|-----------------------|-------------------|
| MPEG     | Audio  | Low            | Yes                   | Yes               |
| RAW      | Video  | Medium         | No                    | No                |
| WAV      | Stream | High           |                       |                   |

#### Test Case: Open video and play to completion



#### **Interaction Fault**





#### Configuration-Dependent Security Bugs (CERT)



#### Description

CWE-502: Deserialization of Untrusted Data - CVE-2017-9805

In Apache Struts 2 framework, versions 2.5 to 2.5.12, the REST plugin uses XStreamHandler with an instance of XStream to deserialize XML data. Because there is no type filtering, a remote, unauthenticated attacker may send a specially crafted XML payload to execute arbitrary code in the context of the Struts application.

Refer to the researcher's blog post for more information about this vulnerability. A Metasploit module with exploit code is publicly available.



If it is not used, consider removing the REST plugin. Per the vendor, it is also possible to limit its functionality to normal server pages or JSON with the following configuration change in struts.xml:

<constant name="struts.action.extension" value="xhtml,,json" />



#### Also Impacts Program Performance





#### **Configuration Dependence**





#### **Real Configuration Spaces**

| Encoding | Format | Caching<br>Level | Closed-<br>Captioning | Network<br>Access |
|----------|--------|------------------|-----------------------|-------------------|
| MPEG     | Audio  | Low              | Yes                   | Yes               |
| RAW      | Video  | Medium           | No                    | No                |
| WAV      | Stream | High             |                       |                   |



#### **Real Configuration Spaces**





## **Combinatorial Interaction Testing (CIT)**

- Sample the space so that all *t*-way combinations of values occur AT LEAST once
- **t** is defined as strength of testing



## Combinatorial Interaction Testing (CIT)

|   | Encoding | Format | Caching<br>Level | Closed-<br>Captioning | Network<br>Access |
|---|----------|--------|------------------|-----------------------|-------------------|
| 1 | MPEG     | Stream | Medium           | Yes                   | Yes               |
| 2 | RAW      | Video  | High             | No                    | No                |
| 3 | MPEG     | Video  | Low              | No                    | Yes               |
| 4 | WAV      | Stream | High             | No                    | Yes               |
| 5 | RAW      | Stream | Low              | Yes                   | No                |
| 6 | MPEG     | Audio  | High             | Yes                   | No                |
| 7 | WAV      | Video  | Medium           | Yes                   | No                |
| 8 | RAW      | Audio  | Medium           | No                    | Yes               |
| 9 | WAV      | Audio  | Low              | Yes                   | Yes               |



## Combinatorial Interaction Testing (CIT)

|   | Encoding | Format | Caching<br>Level | Closed-<br>Captioning | Network<br>Access |
|---|----------|--------|------------------|-----------------------|-------------------|
| 1 | MPEG     | Stream | Medium           | Yes                   | Yes               |
| 2 | RAW      | Video  | High             | No                    | No                |
| 3 | MPEG     | Video  | Low              | No                    | Yes               |
| 4 | WAV      | Stream | High             | No                    | Yes               |
| 5 | RAW      | Stream | Low              | Yes                   | No                |
| 6 | MPEG     | Audio  | High             | Yes                   | No                |
| 7 | WAV      | Video  | Medium           | Yes                   | No                |
| 8 | RAW      | Audio  | Medium           | No                    | Yes               |
| 9 | WAV      | Audio  | Low              | Yes                   | Yes               |


# Combinatorial Interaction Testing (CIT)

|   | Encoding | Format             | Caching<br>Level | Closed-<br>Captioning | Network<br>Access |
|---|----------|--------------------|------------------|-----------------------|-------------------|
| 1 | MPEG     | <del>S</del> tream | Medium           | Yes                   | Yes               |
| 2 | RAW      | Video              | High             | No                    | No                |
| 3 | MPEG     | ₩ideo              | Low              | No                    | Yes               |
| 4 | WAV      | Stream             | High             | No                    | Yes               |
| 5 | RAW      | Stream             | Low              | Yes                   | No                |
| 6 | MPEG     | Audio              | High             | Yes                   | No                |
| 7 | WAV      | Video              | Medium           | Yes                   | No                |
| 8 | RAW      | Audio              | Medium           | No                    | Yes               |
| 9 | WAV      | Audio              | Low              | Yes                   | Yes               |



# Combinatorial Interaction Testing (CIT)

|     | Encoding | Format             | Caching<br>Level | Closed-<br>Captioning | Network<br>Access |
|-----|----------|--------------------|------------------|-----------------------|-------------------|
| 1 ( | MPEG     | <del>S</del> tream | Medium           | Yes                   | Yes               |
| 2   | RAW      | Video              | High             | No                    | No                |
| 3   | MPEG     | <b>∀</b> ideo      | Low              | No                    | Yes               |
| 4   | WAV      | Stream             | High             | No                    | Yes               |
| 5   | RAW      | Stream             | Low              | Yes                   | No                |
| 6 ( |          | Audio              | High             | Yes                   | No                |
| 7   | WAV      | Video              | Medium           | Yes                   | No                |
| 8   | RAW      | Audio              | Medium           | No                    | Yes               |
| 9   | WAV      | Audio              | Low              | Yes                   | Yes               |



## Some Combinatorial Testing Tools

### ACTS

### National Institutes of Standards

#### **Combinatorial Methods for Trust and Assurance**

f 🎔 in 🖾

#### **Overview**

#### Combinatorial methods reduce costs for testing, and have important applications in software engineering:

• Combinatorial or t-way testing is a proven method for better testing at lower cost. The key insight underlying its effectiveness resulted from a series of studies by NIST from 1999 to 2004. research showed that most software bugs and failures are caused by one or two parameters, with progressively fewer three or more, which means that combinatorial testing can provide more efficient fault detection than conventional methods. Multiple studies have shown fault detection equa

| NIST | Cumulative proportion of faults for $t = 16$ |  |
|------|----------------------------------------------|--|
| by   |                                              |  |
| to   |                                              |  |

| % PROJECT LINKS             |  |  |
|-----------------------------|--|--|
| Overview                    |  |  |
| FAQs                        |  |  |
| ADDITIONAL PAGES            |  |  |
| Quick start                 |  |  |
| Downloadable Tools          |  |  |
| Tutorials and Documentation |  |  |
|                             |  |  |

| G microsoft / pict Public |                                            |                                    |                                    |               |
|---------------------------|--------------------------------------------|------------------------------------|------------------------------------|---------------|
| <> Code () Issues 12      | 1 Pull requests 1 R Discussions 🕑 Action   | s 🗄 Projects 😲                     | Security 🗠 Insights                |               |
|                           | ۶ main ◄ ٤ 3 Branches ♦ 5 Tags             |                                    | Q Go to file                       | <> Code -     |
|                           | apodhrad Containerize the pict tool (#114) | ~                                  | a3d373b · 6 months ago             | 🕓 138 Commits |
| <b></b>                   |                                            | yml, upgrade checkout action to v3 | last year                          |               |
|                           | 📄 api-usage                                | Upgrade projects to V              | S2022, bump the ver number. (#106) | last year     |



## **Characterizing Test Failures**

 Use machine learning techniques (classification trees) to model option setting patterns that explain test failures





This work was supported in part by the Better Scientific Software Fellowship Program, funded by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy (DOE) Office of Science and the National Nuclear Security Administration; and by the National Science Foundation (NSF) under Grant Nos. 2154495, 2234908, 1909688

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the DOE or NSF.