
Laboratory for Variability-Aware Assurance and
 Testing of Organic Programs LaVA-OPs

GETTING IT RIGHT: SYSTEM
TESTING OF SCIENTIFIC SOFTWARE

Myra Cohen
https://www.cs.iastate.edu/~mcohen

mcohen@iastate.edu

mailto:mcohen@iastate.edu

Scientific Software is Everywhere

2

Yet it sometimes Fails..

3

4

Yet it sometimes Fails..

Yet it sometimes Fails..

5

Yet it sometimes Fails..

6

Sometimes it seems to fail..

7

Sometimes it seems to fail..

8

Cost of Poor Quality Software

■ CISQ Consortium for Information & Software Quality 2020 report
 $2.08 trillion cost in United States

■ 2002 National Institutes of Standards and Technology
 Up to $59 Billion per year in United States

■ Scientific Software
 ?

9

Why Test Software?

10

Why Test Software?

11

Why Test Software?

Merali, Zeeya. “Computational Science: ...Error.” Nature 467, no. 7317 (Oct, 2010): 775–77

12

Overview

Types of
Testing

Challenges Models Coverage Oracles Configurability

13

What is Testing

Oracle

Input/data Result

14

What Should We Test?

Correctness Performance Security Interoperability Usability Other…

15

What Should We Test?

Correctness Performance Security Interoperability Usability Other…

•Extensibility
•Modularity

16

Unit tests are important, but there is more….

Limitations

Testing can only show the presence of faults.
It cannot determine their absence.

Edsger W. Dijkstra

17

Challenge 1

■ To detect a program FAILURE we need to:
– Reach a FAULT in the code
– Infect the code (change to incorrect state) - ERROR
– Propagate the error out of program
– Reveal (detect) the error – (ORACLE)

 RIPR model Ammann, Offutt (Introduction to Software Testing, 2016)

18

Challenge 2

■ Covering code during testing, only tests the logic that is there!
– Also need to test from the system – does the software meet the specifications

19

Tests Can Miss Faults

20

Tests Can Miss Faults
1. Test Case 3, 4, 5 (scalene)

• doesn’t reach fault

21

Tests Can Miss Faults
1. Test Case 3, 4, 5 (scalene)

• doesn’t reach fault

2. Test Case 5, 1, 1 (invalid)
• reaches fault and infects
• reveals (returns isosceles)

5,5,1

22

Tests Can Miss Faults
1. Test Case 3, 4, 5 (scalene)

• doesn’t reach fault

2. Test Case 5, 1, 1 (invalid)
• reaches fault and infects
• reveals (returns isosceles)

3. Test Case 2, 1, -1 (invalid)
• reaches fault and infects
• Doesn’t propagate (2, 2,-1) is still

INVALID

2,2,-1

23

?

24

The Future?
, or alternatively, Machine learning (ML) classifiers will
select the templates for model reconstruction

25

Overview

Types of
Testing

Challenges Models Coverage Oracles Configurability

26

Models

Provide an abstraction of the software we are testing

Can be for different dimensions of the software (specifications, interface, code)

Allow us to reason about how much we have tested

The foundation for automated test generation

27

Example Models

Graphs

Tabular

Relational

Grammar based

Logic based

28

Graph Models

Program control flow graph

User interface

Program state machine

29

Types of Graph Coverage

• All nodes
• All edges (pairs of nodes)
• All length N paths
• M random length N paths

30

Program Code Coverage

31

Program Code Coverage

Example tools: jacoco, coverage.py, gcov

32

Interface (graph) Coverage

GUI

Web

33

Other Coverage

Specification coverage
•Cover the system requirements

Interaction coverage
•Measure interactions between components

•Pairs, n-way coverage

34

Overview

Types of
Testing

Challenges Models Coverage Oracles Configurability

35

What is the Correct Answer?

36

Trivial Oracles

Program crashes

Core dump

Segmentation error

Overflow

Program hangs

37

Trivial Oracles

■ Good when we don’t have a known result
■ Weakest oracle since it only shows that the program

fails/not that the result is incorrect
■ Exact oracles are easy to compute in some programs

38

Harder Oracles

39

Making Oracles Hard

■ Results may differ by small epsilons (due to rounding)
■ Expected result may not be computable without

program
■ May have time series results
■ Takes a long time to manually compute each oracle

(even when we can)
■ Programs may be stochastic (or non-determinstic)

40

Examples
Python docs

Same growth values?

Expected: 0.35695124
Observed: 0.35695122

Correct hits?

41

Some Techniques

Differential testing Metamorphic testing

42

Differential Testing

Differential testing

Run same tests using different programs
that have the same functionality

Ø run tests with BLAST
Ø run tests with HPC-BLAST

Challenge is determining equivalency

43

Metamorphic Testing

Metamorphic testing

Define relations on sets of tests:

e.g. (subtraction)

(1) A-B = C

Create Aʹ (greater than A)

(2) Aʹ -B = Cʹ means Cʹ is greater than C

44

Metamorphic Testing

Metamorphic testing

Use Domain Knowledge
e.g. Ocean temperature modeling
A. Compute predicted temperature
B. Modify to increase expected temperature

Confirm relation holds

45

46

Carbon-D-Glucose <= Complete

Overview

Types of
Testing

Challenges Models Coverage Oracles Configurability

47

Configurability

48

49

gactacgatcgggc

Configurability

50

• DNA sequenced into small segments (reads)
• Assembly combines reads into longer continuous

sequences
• Result is a certain number of continuous sequences

MEGAHIT (DNA Assembler)

Credit to Mikaela Cashman
M. Cashman, M. B. Cohen, P. Ranjan, R. W. Cottingham, Navigating the Maze: the Impact of
Configurability in Bioinformatics Software, ASE, 2018 51

52

--min-count

--k-min

--k-max

--k-step

rhodo.art.q20.PE.reads

53

rhodo.art.q20.PE.reads

output.contigs
Number of continuous
sequences 284

Configuration Default

--min-count

--k-min

--k-max

--k-step

54

rhodo.art.q20.PE.reads

output.contigs
284

Configuration Default

Number of continuous
sequences

55

rhodo.art.q20.PE.reads

output.contigs

119

k-max=119

284 285

Configuration Default

Number of continuous
sequences

--min-count

--k-min

--k-max

--k-step

56

rhodo.art.q20.PE.reads

output.contigs

141

2

21

12

119

Default-Manualk-max=119

284 285 285

Configuration Default

Number of continuous
sequences

--min-count

--k-min

--k-max

--k-step

57

rhodo.art.q20.PE.reads

output.contigs

Default Default-Manual

99

2

21

12

k-max=99

119

k-max=119

284 285 285 289

Configuration

141

2

21

12

Number of continuous
sequences

--min-count

--k-min

--k-max

--k-step

58

rhodo.art.q20.PE.reads

output.contigs

Default Default-Manual

99

2

21

12

k-max=99

119

k-max=199Configuration

141

2

21

12

Number of continuous
sequences

--min-count

--k-min

--k-max

--k-step

284 285 285 289

Challenge for Testing

Encoding Format Cache
 Level

Closed-
Captioning

Network
Access

MPEG Audio Low Yes Yes

RAW Video Medium No No

WAV Stream High

59

Media Player

Encoding Format Cache
 Level

Closed-
Captioning

Network
Access

MPEG Audio Low Yes Yes

RAW Video Medium No No

WAV Stream High

60

Media Player

Encoding Format Cache
 Level

Closed-
Captioning

Network
Access

MPEG Audio Low Yes Yes

RAW Video Medium No No

WAV Stream High

61

Media Player

Encoding Format Cache
 Level

Closed-
Captioning

Network
Access

MPEG Audio Low Yes Yes

RAW Video Medium No No

WAV Stream High

62

Encoding Format Cache
 Level

Closed-
Captioning

Network
Access

MPEG Audio Low Yes Yes

RAW Video Medium No No

WAV Stream High

Testing the Player

Test Case: Open video and play to completion
63

Encoding Format Cache
 Level

Closed-
Captioning

Network
Access

MPEG Audio Low Yes Yes

RAW Video Medium No No

WAV Stream High

Test Case: Open video and play to completion

Interaction Fault

crash

64

Configuration-Dependent Security Bugs (CERT)

65

Growth Value

Ti
m

e
(s

ec
on

ds
)

Also Impacts Program Performance

Same functionality

can be achieved in

different

performance

Figure credited to M. Cashman 66

Co
nf
ig
ur
at
io
ns

Faults

Configuration Dependence

Figure credited to Xiao Qu 67

Real Configuration Spaces

Encoding Format Caching
Level

Closed-
Captioning

Network
Access

MPEG Audio Low Yes Yes

RAW Video Medium No No

WAV Stream High

68

Real Configuration Spaces

Encoding Format Caching
Level

Closed-
Captioning

Network
Access

MPEG Audio Low Yes Yes

RAW Video Medium No No

WAV Stream High

3 x 3 x 3 x 2 x 2 = 108 configurations

10 features with 5 options = 9,765,625 configs

4 hours to run test suite —> 4,459 years to run

gcc optimizer (199 options) — 1061

Linux > 10,000 features
69

Combinatorial Interaction Testing (CIT)

■ Sample the space so that all t-way combinations of
values occur AT LEAST once
■ t is defined as strength of testing

70

Encoding Format Caching
Level

Closed-
Captioning

Network
Access

1 MPEG Stream Medium Yes Yes

2 RAW Video High No No

3 MPEG Video Low No Yes

4 WAV Stream High No Yes

5 RAW Stream Low Yes No

6 MPEG Audio High Yes No

7 WAV Video Medium Yes No

8 RAW Audio Medium No Yes

9 WAV Audio Low Yes Yes

Combinatorial Interaction Testing (CIT)

71

Encoding Format Caching
Level

Closed-
Captioning

Network
Access

1 MPEG Stream Medium Yes Yes

2 RAW Video High No No

3 MPEG Video Low No Yes

4 WAV Stream High No Yes

5 RAW Stream Low Yes No

6 MPEG Audio High Yes No

7 WAV Video Medium Yes No

8 RAW Audio Medium No Yes

9 WAV Audio Low Yes Yes

Combinatorial Interaction Testing (CIT)

72

Encoding Format Caching
Level

Closed-
Captioning

Network
Access

1 MPEG Stream Medium Yes Yes

2 RAW Video High No No

3 MPEG Video Low No Yes

4 WAV Stream High No Yes

5 RAW Stream Low Yes No

6 MPEG Audio High Yes No

7 WAV Video Medium Yes No

8 RAW Audio Medium No Yes

9 WAV Audio Low Yes Yes

Combinatorial Interaction Testing (CIT)

73

Encoding Format Caching
Level

Closed-
Captioning

Network
Access

1 MPEG Stream Medium Yes Yes

2 RAW Video High No No

3 MPEG Video Low No Yes

4 WAV Stream High No Yes

5 RAW Stream Low Yes No

6 MPEG Audio High Yes No

7 WAV Video Medium Yes No

8 RAW Audio Medium No Yes

9 WAV Audio Low Yes Yes

Combinatorial Interaction Testing (CIT)

74

Some Combinatorial Testing Tools
ACTS

National Institutes of Standards

75

Characterizing Test Failures

■ Use machine learning techniques (classification trees)
to model option setting patterns that explain test
failures

OK ERR-2
!All

|Innodb

SQL Mode

ExtraCharsets

Extra Charsets

OK ERR-1 ERR-3

!With

Complex !Complex

With

ANSI !ANSI

All

76

Summary

This work was supported in part by the Better Scientific Software Fellowship Program, funded by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy (DOE) Office of Science and the National Nuclear Security Administration; and by the National
Science Foundation (NSF) under Grant Nos. 2154495, 2234908, 1909688

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the DOE or NSF.

77

