
Code Review for Scientific Software
experiences building an online tutorial

Helen Kershaw
DAReS, NSF NCAR

https://ncar.ucar.edu/
https://www.nsf.gov/
https://dart.ucar.edu/

Terminology

BSSwF Better Scientific Software Fellowship

NSF National Science Foundation
NCAR National Center for Atmospheric Research
UCAR University Corporation for Atmospheric Research

SEA Software Engineering Assembly (UCAR/NCAR)

DART Data assimilation Research Testbed

DAReS Data Assimilation Research Section

AMS American Meteorological Society

2

Goals

● Tell you about my BSSwF project
● Share my experience building the tutorial
● Share practice and experience with code review from UCAR SEA

3

Goals

● Tell you about my BSSwF project
● Share my experience building the tutorial
● Share practice and experience with code review from UCAR SEA

● Get you to think about code review

4

Goals

● Tell you about my BSSwF project
● Share my experience building the tutorial
● Share practice and experience with code review from UCAR SEA

● Get you to think about code review
● And the joy of open source software

5

About me

hkershaw@ucar.edu
6

About me

7

8

9

About me

10

About me

11

DART
Data Assimilation Research

Testbed

Cross-lab

Cross-institution

Cross-country

Cross-world

12

https://dart.ucar.edu/
https://ncar.ucar.edu/
https://www.nsf.gov/

13

dart.ucar.edu
14

http://dart.ucar.edu

15

https://bssw.io/

https://bssw.io/pages/meet-our-fellows 16

https://bssw.io/pages/meet-our-fellows

What problem am I
trying to solve?

17

https://www.channel4.com/programmes/garth-marenghis-darkplace 2004 18

https://www.channel4.com/programmes/garth-marenghis-darkplace

code-review.org

19

What outcomes would
I like to see?

20

Outcomes

● People reviewing early and often
● People reviewing each others code
● Comfortable with napkin explanations of code
● Become a better reviewer
● Better code
● Take a look inside
● More open source contributors!

21

Outcomes

● People reviewing early and often
● People reviewing each others code
● Comfortable with napkin explanations of code
● Become a better reviewer
● Better code
● Take a look inside
● More open source contributors! Ulterior Motive

22

Onboard new
contributors to DART

23

Onboard new
contributors to DART

But not be specific to DART

24

Code review is a skill

25

Learning several things at once

● The mechanics of git and GitHub
● A new programming language
● New science
● Culture of new team

26

Learning several things at once

● The mechanics of git and GitHub
● A new programming language
● New science
● Culture of new team Seasoned professional

Early career

27

Learning several things at once

● The mechanics of git and GitHub
● A new programming language
● New science
● Culture of new team
● And code review

Seasoned professional

Early career

28

The Tutorial
code-review.org

29

http://code-review.org

The Tutorial

30

Three sets of exercises

● No code
● Python
● Fortran

No code exercises

● Cake recipe
● Article on the women’s world cup
● Origami instructions to make a fish

31

The Tutorial

32

Three sets of exercises

● No code
● Python
● Fortran

The Tutorial

33

Three sets of exercises

● No code
● Python
● Fortran

The Tutorial

34

Three sets of exercises

● No code
● Python
● Fortran

● Issue + prompts
● Pull request + prompts

Setting up the tutorial
on GitHub

35

https://github.com/scientific-software-reviewers/tutorial

● Fork
● All branches
● Enable workflows
● …

36

● Fork
● All branches
● Enable workflows
● …

Barrier before I’ve started

37

take-a-look repository

38

Setting up the tutorial
on GitHub

39

● Fork
● All branches
● Enable workflows
● Run workflows

Setting up the tutorial on
GitHub

40

41

● Fork
● All branches
● Enable workflows
● Run workflows

Create the exercises

42

43

44

45

46

47

Navigating the exercises

Issues Pull Requests

48

Issues Pull Requests

49

Problem Solution

Issues

50

Pull Requests

51

Pull Requests

52

Navigating Pull Requests
size and scope

53

Adding suggestions

54

Adding your review

55

Reviewing

56

Reviewing Being reviewed

57

Does the pull request address the issue?

Are there any deal breakers that would stop you
accepting the changes?

Can you suggest any improvements?

What is a good way to phrase your suggested
improvements?

Is the solution overly complicated? Are the comments up
to date, necessary, helpful?

Would you accept the pull request as it is now? Are your
suggested changes must-do? nice-to-have? nitpicks?
How would you communicate this?

Do you spend a lot of time reviewing the code style? Is it
worth having a style guide for contributors? Can you
make use of an existing style guide? Or a linter?

Reviewing Being reviewed

58

When putting in a pull request, how can you make it
easy for a reviewer to understand what you have
done?

What makes a good pull request, what makes a
bad pull request?

Can you commit code in a way that lets someone
review your code more easily? Should you
separate functional changes from style changes?

Would you use a tool such as commitizen to prompt
yourself at commit time? Why? Why not?

Does the pull request address the issue?

Are there any deal breakers that would stop you
accepting the changes?

Can you suggest any improvements?

What is a good way to phrase your suggested
improvements?

Is the solution overly complicated? Are the comments up
to date, necessary, helpful?

Would you accept the pull request as it is now? Are your
suggested changes must-do? nice-to-have? nitpicks?
How would you communicate this?

Do you spend a lot of time reviewing the code style? Is it
worth having a style guide for contributors? Can you
make use of an existing style guide? Or a linter?

Reviewing Being reviewed

59

http://commitizen.github.io/cz-cli/)

Mechanics of the tutorial
Adding exercises

60

Adding exercises

Two GitHub workflows:

create_exercises create_exercises.yaml

reset_exercises close_issues_and_pulls.yaml

https://github.com/scientific-software-reviewers/tutorial 61

Adding exercises

62

Adding exercises

issues/{Language}-ex{#}-issue.md

pull_requests/{Language}-ex{#}-pull_body.md

Branch: {Language}-{#}

63

Adding exercises

issues/{Language}-ex{#}-issue.md

pull_requests/{Language}-ex{#}-pull_body.md

Branch: {Language}-{#}

.github/workflows/create_exercises.yaml is the
action that takes ‘Language’, and for each
exercise {1..n}:

64

Adding exercises

issues/{Language}-ex{#}-issue.md

pull_requests/{Language}-ex{#}-pull_body.md

Branch: {Language}-{#}

.github/workflows/create_exercises.yaml is the
action that takes ‘Language’, and for each
exercise {1..n}:

● creates any issues {Language}-{1…n}.

65

Adding exercises

issues/{Language}-ex{#}-issue.md

pull_requests/{Language}-ex{#}-pull_body.md

Branch: {Language}-{#}

.github/workflows/create_exercises.yaml is the
action that takes ‘Language’, and for each
exercise {1..n}:

● creates any issues {Language}-{1…n}.
● creates pull requests {1..n} for branches

{Language}-{1..n} using text from
{Language}-pull_body.md

66

Adding exercises

issues/{Language}-ex{#}-issue.md

pull_requests/{Language}-ex{#}-pull_body.md

Branch: {Language}-{#}

.github/workflows/create_exercises.yaml is the
action that takes ‘Language’, and for each
exercise {1..n}:

● creates any issues {Language}-{1…n}.
● creates pull requests {1..n} for branches

{Language}-{1..n} using text from
{Language}-pull_body.md

Code is in the directories:

{Language}/exercise{#}

67

Adding exercises

.github/workflows/close_issues_and_pulls.yaml

Resets the exercises:

Roll back the repo with git reset hard

Restores the {Language}-{#} branch from a
corresponding backup-{Language}-{#} branch

68

Squashing git history

main branch has only two commits:

● Initial commit
● Code review tutorial

69

Squashing git history

main branch has only two commits:

● Initial commit
● Code review tutorial

Examine commit
history in
exercises

70

code-review.org

https://github.com/scientific-software-reviewers/tutorial

71

Software Engineering is
“programming integrated over time”

Winters, T., Manshreck, T., & Wright, H. (2020). Software engineering at google: Lessons learned from programming over time.
O'Reilly Media72

Experiences from UCAR SEA
Software Engineering Assembly

73

What is the SEA?

74

UCAR Software Engineering Assembly

75

● Foster community for software engineering professionals within UCAR
● Facilitate effective participation
● Advocate for Software Engineers

SEA Improving Scientific Software Conference April 15th-18th
https://sea.ucar.edu/conference/2024

https://sea.ucar.edu/conference/2024

Code Review
Experiences from UCAR SEA
Software Engineering Assembly

76

Experiences from UCAR SEA
Join the UCAR Software Engineering Assembly for a lightly-moderated discussion on code review across
UCAR.

Any discussion topics are welcome, as are all experience levels. We encourage you to share your good
and bad experiences with code review.

● Do you use code review in your group? Who does the reviewing? Have you used code review to
transfer knowledge between team members?

● Reviewing is hard. Being reviewed can be difficult. How do you give and receive constructive and
actionable criticism?

● Do you do in person code reviews? Offline code-reviews? What works, what doesn’t?
● Do you spend too much time in review, and have ideas to improve the process?

77

Experiences from UCAR SEA

Code review feels like someone works with
me and we learn from each other

Downside:Back/forth that happens, especially
since the code review is not #1 priority. Can
slow down the process.

GitHub made it much easier to code review.

When people do not know much about what
others do in the code, review gives an
opportunity to learn about what is going on in
the project

Getting very burned out with code reviews generally
e.g. Do a review, wait ~2 weeks, can feel really negative
sometimes
Recently got more negative on it but would love to hear
positive experiences about it

78

Used to do code reviews in person years
ago. Finding bugs and avoiding problems
down the line works great. Can’t imagine
deploying code without reviews. Couldn’t
maintain the code without reviews.

Experience mostly getting my code being
reviewed rather than reviewing others’. Need
to coordinate with each other to find the time.
Trick is that it’d be helpful to walk the
reviewer through the code first.

The objectives can be communicated well
beforehand using a pull request template to
reduce the overhead of back & forth and
expectations for a due date for the pull
request can be set.

Communicating what to look at in the code is
really important.

Experiences from UCAR SEA

79

Experiences from UCAR SEA

A lot of friction points about code review.
Ethics around code review is not clear.
Code review is a lot of times not equitable,
e.g. more pushback for women’s code.

Systemic Gender Inequities in Who Reviews
Code
The Pushback Effects of Race, Ethnicity,
Gender, and Age in Code Review –
Communications of the ACM
Presentation by Dr. Kelly Blincoe about code
review as a socio-technical activity. Includes
relevant data and potential policy implications
on code review processes and impact.

Code style actions, automation could be
helpful with the code reviewing process to
reduce unwanted reviewing (code styling,
etc.)

Pick the most impactful aspects of the code
to comment on, no need to mention
everything. Impact can include functionality,
quality, maintainability, readability, testability.

80

https://research.google/pubs/systemic-gender-inequities-in-who-reviews-code/
https://research.google/pubs/systemic-gender-inequities-in-who-reviews-code/
https://cacm.acm.org/magazines/2022/3/258909-the-pushback-effects-of-race-ethnicity-gender-and-age-in-code-review/fulltext
https://cacm.acm.org/magazines/2022/3/258909-the-pushback-effects-of-race-ethnicity-gender-and-age-in-code-review/fulltext
https://cacm.acm.org/magazines/2022/3/258909-the-pushback-effects-of-race-ethnicity-gender-and-age-in-code-review/fulltext
https://drive.google.com/file/d/1Q-su_FcNgdhN6SN-I27Ry__Nk8Kxu9bB/view

Experiences from UCAR SEA

Submitting changes without sufficient
descriptions is less helpful.

Sometimes reviews have a lot of back &
forth, and can get political. Try to keep it very
non-personal. The thing being reviewed is not
the person but the code that will benefit an
entire project/organization.

It’s a joint responsibility.

Encourage "the code" and not "your code". We
are not our code

Make it clear about the asynchronous aspect
of the PRs. Also use “why would you do
that?” for asking the reasoning (?)

Having been in both scientist and developer
perspectives, set expectations and convey
what the goals are for each group, collective
set of expectations. And, things may differ
from person to person, even if they are all
one kind (e.g. scientist).

Consistency. Type of code you are working
on (pure research vs. operational
product/deliverable) and how you set
expectations is also very important.

81

Experiences from UCAR SEA

1:1 code review in person is a bit different
than remote.

Do onboarding by working side-by-side rather
than a remote pull request review process.
Some form of pair programming.

When getting someone new to our code
contributions, reach out individually with an
email that clarifies some important points
about the process.

How Microsoft do code reviews mentions the
use of emojis to describe things like nitpick,
thinking out loud, take it or leave it, etc.
👍❓❌🔧 🙃💭🤡

Code review as an onboarding task

82

https://devblogs.microsoft.com/appcenter/how-the-visual-studio-mobile-center-team-does-code-review/

Finding Community

83

Finding Community

● US-RSE. A community of people who make research software happen.
● Society of Research Software Engineering which emerged from the

successful grass-roots RSE movement and is the successor to the UK RSE
Association.

● Better Scientific Software. A hub for scientific software development
resources.

● Campus Champions. Uniting Research Computing Facilitators
● …

84

Finding Community

● US-RSE. A community of people who make research software happen.
● Society of Research Software Engineering which emerged from the

successful grass-roots RSE movement and is the successor to the UK RSE
Association.

● Better Scientific Software. A hub for scientific software development
resources.

● Campus Champions. Uniting Research Computing Facilitators
● …

code-review.org
hkershaw@ucar.edu
USRSE slack

85

mailto:hkershaw@ucar.edu

86

87

