
Dr. Nitin Sukhija, Director C2AC and
Associate Professor, Department of
Computer Science

Software
Programming

Practices
and

Development

Dr. Nitin Sukhija, Director C2AC and
Associate Professor, Department of
Computer Science

Software
Programming

Practices
and

Development

Secure Software

Nitin Sukhija
Associate Professor and Director of Center for Cybersecurity and
Advanced Computing (C2AC), LBNL affiliate, Campus Champion
Leadership team, ACM SIGHPC education chapter
Department of Computer Science
Slippery Rock University of PA

High performance Data Analytics and Cyber Resilience
nitin.sukhija@sru.edu (or google)

About me

3

Introduction Challenges Software

Development

Life Cycle

Secure

Software

Development

Life Cycle

Threat

Modeling
SAST and

DAST tools

Question

and

Answers

Outline

4

Why are we talking about
Secure Software
Development ?

5

Case 1: SolarWinds Attack 2020

➢ a supply chain attack leading to data breaches globally

➢ threat actors turned the Orion software into a weapon
gaining access to several government systems and
thousands of private systems around the world

➢ infected up to 18,000 customers globally, including major
U.S government departments

➢ one of the most sophisticated cyberattacks in the software
lifecycles ever deployed

6

Case 1: SolarWinds Attack 2020

➢ a supply chain attack leading to data breaches globally

➢ threat actors turned the Orion software into a weapon
gaining access to several government systems and
thousands of private systems around the world

➢ infected up to 18,000 customers globally, including major
U.S government departments

➢ one of the most sophisticated cyberattacks in the software
lifecycles ever deployed

✓ not enough to build a firewall
and hope it protects

✓ need to actively seek out
vulnerabilities in systems
software

7

Case 2: Dependency Confusion Attack 2021

➢ unveiled by security researcher Alex Birsan (@alxbrsn) in
2021

➢ targets third-party dependencies.

➢ threat actors inject malicious code into the dependencies
the application uses, allowing them to access the
application and its data.

➢ breached the systems belonging to Microsoft, Apple,
Uber, and Tesla.

8

Case 2: Dependency Confusion Attack 2021

➢ unveiled by security researcher Alex Birsan (@alxbrsn) in
2021

➢ targets third-party dependencies.

➢ threat actors inject malicious code into the dependencies
the application uses, allowing them to access the
application and its data.

➢ breached the systems belonging to Microsoft, Apple,
Uber, and Tesla.

✓ developers must know about
the risks of dependency
confusion and the importance of
secure package management

9

Case 3: NATO Data Breach 2022

➢ a data breach on the NATO’s Communities of Interest
(COI) Cooperation Portal

➢ software was injected with malware by SiegedSec (a
cybercrime group with a history of politically-motived
attacks)

➢ 3,000 stolen files total more than nine gigabytes of
sensitive data intended for NATO countries and partners..

➢ was a response to NATO’s human rights violations and
because it was “fun to leak documents.”

10

Case 3: NATO Data Breach 2022

➢ a data breach on the NATO’s Communities of Interest
(COI) Cooperation Portal

➢ software was injected with malware by SiegedSec (a
cybercrime group with a history of politically-motived
attacks)

➢ 3,000 stolen files total more than nine gigabytes of
sensitive data intended for NATO countries and partners..

➢ was a response to NATO’s human rights violations and
because it was “fun to leak documents.”

✓ Promote secure coding practices
during the development process to
minimize vulnerabilities that
attackers could exploit to inject
malware.

✓ Regularly conduct security code
reviews and utilize automated
security testing tools to identify
potential weaknesses.

11

Case 4: MOVEit data breach Attack 2023

➢ a zero-day exploit of Progress Software’s MOVEit Transfer
enterprise file transfer tool

➢ used by a ransomware gang called Cl0p

➢ allowed the hackers to inject SQL commands and access
the databases of MOVEit customers

➢ the biggest data theft of 2023

➢ over 2,500 organizations have reported being attacked,
with data thefts affecting more than 62 million people as
of Oct 2023

12

Case 4: MOVEit data breach Attack 2023

➢ a zero-day exploit of Progress Software’s MOVEit Transfer
enterprise file transfer tool

➢ used by a ransomware gang called Cl0p

➢ allowed the hackers to inject SQL commands and access
the databases of MOVEit customers

➢ the biggest data theft of 2023

➢ over 2,500 organizations have reported being attacked,
with data thefts affecting more than 62 million people as
of Oct 2023

✓ Check indicators of
compromise (IoCs) that
may suggest your software
has been affected by the
attack.

13

What’s really going on here ?

14

What’s really going on here ?Cost of Cyberattacks –
Billions!!

15

Challenges Software

Development

Life Cycle

Secure Software

Development

Life Cycle

Threat

Modeling
SAST and

DAST tools

Question and

Answers

Continued..

16

Increasing Complexity and Threat Vectors
Number of unpredictable and highly dynamic factors

3) Convergence of Big data, HPC and Cloud services

4) Reliance of more and more software applications on open-source
packages and third-party dependencies

2) Proliferation in the hybrid system models and orchestration of many
complex software services

1)Heterogeneity of interconnected networks, applications, server, and
virtualized infrastructure components

5) Dependence on digital data transfer becoming increasingly common
for businesses of all sizes and domains.

17

Increasing Complexity and Threat Vectors
Number of unpredictable and highly dynamic factors

3) Convergence of Big data, HPC and Cloud services

4) Reliance of more and more software applications on open-source
packages and third-party dependencies

2) Proliferation in the hybrid system models and orchestration of many
complex software services

1)Heterogeneity of interconnected networks, applications, server, and
virtualized infrastructure components

5) Dependence on digital data transfer becoming increasingly common
for businesses of all sizes and domains.

✓ Risks continue to increase!

✓ Vendors are likely unaware
that their software, apps or
updates are infected with
malicious code when
released to the public

18

Security Not a Priority

➢ During Software Development other design priorities
often trump security

Cost

Faster Builds

Convenience

Open
Architecture Backwards

Compatibility

Software
Design

19

Software

Development Life

Cycle

Secure Software

Development Life

Cycle

Threat Modeling SAST and DAST

tools

Question and

Answers

Continued..

20

Software Development Cycle

 A generic methodology can be seen in the foundation
of these processes and consist of these crucial aspects:
❑ Proposal

❑ Production

❑ Distribution

❑ Maintenance

 Adhering to this strategy is what defines the
effectiveness of these life cycle models

 Simplicity and Efficiency Leads to Beneficial Results

21

Requirement
Analysis

Design

DevelopmentTesting

Maintenance

Risk
Assessment

Threat
Modeling

Static and
Dynamic
Analysis

Security
Testing and
Assessment

Operational
Assurance

Securing Scientific Software Development

Mitigating the risk of software vulnerabilities with best practices and tools for secure scientific
software development

Requirement
Analysis

Design

DevelopmentTesting

Maintenance

22

DevOps Life Cycle

23

 developer team and the IT operations
team working together: DevOps

 collaboration helps aids in superior
quality throughout the system

 continuous development and
continuous integration (CI/CD)

 continuous testing, continuous deployment,
monitoring, feedback, and operations

developers can ensure an application’s operations
and security

DevOps Life Cycle

24

 testing oversees the manufactured code
against the problems that arise after
compilation.

 utilization of automation tools after
developer check

 continuous deployment and efficient
risk assessment where developers can
take advantage of the running
application.

DevOps Life Cycle

25

 testing oversees the manufactured code
against the problems that arise after
compilation.

 utilization of automation tools after
developer check

 continuous deployment and efficient
risk assessment where developers can
take advantage of the running
application.

The security issues
are usually not

detected until the
software has passed
all the tests through
the security teams.

Secure Software

Development Life

Cycle

Threat Modeling SAST and DAST

tools

Question and

Answers

Continued..

26

DevSecOps Life Cycle

27

 Plan

Addressing technical security such as, investigating firewalls,
antivirus software, password management, backups, choosing or
creating security policies for production, training staff on the
security tools to be used throughout the lifecycle

 Code

Employ IDE Security Plug-ins - each IDE supports a different suite
of security plugins. For Visual Studio, security reviewer process all
languages and file extensions to investigate and detect hidden
weaknesses , highlighting vulnerabilities using Open Web
Application Security Project (OWASP), Payment Card Industry Data
Security Standard(PCI-DSS), Web Application Security Consortium
(WASC), Common Vulnerabilities and Exposures (CVE) or more

 Build

Using Static Application Security Testing (SAST) tools to scan an
application’s source, binary, or byte code; aids in remediating
underlying security flaws. Dynamic Application Security Testing
(DAST) used to perform tests the application at runtime, analyzing
the web application through front-end vulnerabilities.

DevSecOps Life Cycle

28

 Test

Chaos Testing is testing production applications by performing health checks and
cleaning up unused system resources. Input Fuzzing tests an application by
providing invalid, unexpected, and random inputs to the computer

 Release

Continuous Code Signing - A security function that is responsible for defining
and implementing corporate security policy as it relates to software development

 Deploy

Signature verification is verifying the integrity of the application’s signature to
ensure that the application came from the correct developers

 Operate

Runtime Application Self-Protection (RASP) is a security technology that uses
runtime instrumentation to detect and block computer attacks by utilizing
information from the inside of the running software

 Monitor

User Entity and Behavior Analytics (UEBA) is a type of cybersecurity solution
that discovers threats by identifying activity that differs from the baseline
behavior

Threat Modeling SAST and DAST tools Question and

Answers

Continued..

29

Designing for Security:
Threat Modeling

30

Goals of Threat Modeling

31

1. Enables organization to anticipate threats
rather than reacting to them.

2. Prioritizes resources, allowing for an
organization to focus on the most significant
vulnerabilities first.

3. Promotes the development of secure software
4. Reduces risk and cost of a cybersecurity

incident

What is Threat Modeling?

32

 Assessing security risks of a software
system from an adversary’s
perspective

Risk:

 The potential for loss, damage or
destruction of an asset as a result of a
threat exploiting a vulnerability

What is Threat Modeling?

33

 A proactive approach to identifying, managing, and
mitigating potential threats.

 Includes defining system components, identifying entry
points, recognizing potential threats, categorizing threats,
and implementing countermeasures.

 The ultimate goal is improving system security and
minimizing cybersecurity risk.

Components of a Threat Model

34

 System Overview - An understanding of how the system and
software function, including how it interacts with other
systems

 Assets - Information that needs protected, including any
personal data, system configurations, or intellectual property

 Adversaries - Who might be interested in compromising the
system.

Components of a Threat Model (cont.)

35

 Attack Vectors - How Adversaries might attack the system

 Weaknesses & Vulnerabilities - Points where the adversary
could exploit the system.

 Mitigations - What measures can be taken to lessen the risk
of a vulnerability.

Threat Modeling Process

36

 System Decomposition - Breaks down the system into assets,
users, entry points, and data flows.

 Threat Identification - Identify potential threats from all
perspectives.

 Vulnerability Analysis - Identify weaknesses that could be
exploited.

Threat Modeling Process

37

 Risk Assessment - Estimate the impact and likelihood of
each threat and vulnerability

 Mitigation Strategy - Develop strategies to reduce the risks

 Document & Communicate - Keep a record of all findings,
actions, and unresolved risks

 Review & Update - Update the model as threats evolve.

STRIDE Methodology

38

STRIDE Methodology Overview

39

 Developed by Microsoft

 Used to identify and categorize potential threats

 Typically used during the design phase of a system

 Covers mainly technical aspects

STRIDE Threat Categories

40

 Spoofing Identity

 Tampering with Data

 Repudiation

 Information Disclosure

 Denial of Service

 Elevation of Privilege

Spoofing Identity

41

 Definition - An attacker impersonates another user.

 Types of Spoofing - Identity, IP, ARP, and DNS spoofing

 Potential Damages -Unauthorized access, stolen data,
damaged reputation

 Mitigation Techniques - Two-factor authentication,
encryption, and education

Tampering with Data

42

 Definition - Unauthorized alteration of data

 Types of Tampering - Data, code, or configuration tampering

 Potential Damages - Unauthorized access, false information,
and lack of data integrity

 Mitigation Techniques - Checks for Data integrity, secure
transmission protocols, and restrictions on access

Repudiation

43

 Definition - A user denies having performed an action

 Types of Repudiation - Transaction, email, and contract
repudiation

 Potential Damages - Business disputes, auditing problems,
and inability to enforce accountability

 Mitigation Techniques - Digital signatures, authentication
protocols, and monitoring

Information Disclosure

44

 Definition - Unauthorized access to sensitive information

 Types of Information Disclosure - Data leaks and breaches

 Potential Damages - Damaged reputation, regulatory
penalties, financial loss, and a loss of trust

 Mitigation Techniques - Access controls, encryption, data
masking, and education

Denial of Service

45

 Definition - Making a system unavailable to users

 Types of DoS - Network, application, and system level
attacks

 Potential Damages - Financial damage and loss of trust

 Mitigation Techniques - Firewalls, capacity planning, and
traffic filtering

Elevation of Privilege

46

 Definition - A user gaining higher access privileges than
intended.

 Types of Elevation of Privilege - Role, Access, and privilege
escalation

 Potential Damages - System manipulation, system damage,
and unauthorized access to sensitive data

 Mitigation Techniques - Access controls, patch management,
regular auditing, and principle of least privilege

Limitations of STRIDE

47

 No built-in method for risk scoring

 Focuses mainly on technical threats, which leaves out
physical security threats

 Relies heavily upon the created data flow diagram

 Identifying threats and using the model requires a high level
of expertise.

DREAD Methodology

48

DREAD Methodology Overview

49

 Introduced by Microsoft

 Designed to evaluate and assess the risk of threats

 Often used with other methodologies, like STRIDE

 Aims to prioritize resources, addressing the most significant
threats first.

DREAD Methodology

50

 Damage Potential

 Reproducibility

 Exploitability

 Affected Users

 Discoverability

Damage Potential

51

 Definition - How bad an attack is

 Types of Damage Potential - Data loss, service interruption,
financial damage, and reputation damage

 Consequences - Dependent on the severity of the attack

 Mitigation Techniques - Regular backups, incident response
planning, and disaster recovery planning

Reproducibility

52

 Definition - How easy is an attack is reproduced

 Types of Attacks - Exploit scripts, automated attacks, and
manual attacks

 Consequences- Higher reproducibility results in more
frequent damage

 Mitigation Techniques - Patching vulnerabilities and
implementing intrusion detection systems

Exploitability

53

 Definition - What is needed to launch an attack

 Types of Exploitability - No user interaction to extensive user
interaction

 Consequences - The easier it is to exploit an attack, the
higher the risk of one occurring.

 Mitigation Techniques - Education, secure programming
practices, and regular vulnerability scanning

Affected Users

54

 Definition - How many users are affected

 Types of Affected Users - single users, groups of users, or all
users

 Consequences - The more users affected, the more damage
that will occur

 Mitigation Techniques - Principle of least privilege, network
segmentation, and access controls

Discoverability

55

 Definition - How easy the threat is to discover ?

 Types of Discoverability - Threats that are easy to discover, to
threats that are extremely difficult to discover

 Consequences - The more likely a threat is to be discovered,
the more likely it is to be exploited

 Mitigation Techniques - Regular penetration testing,
vulnerability scanning, and security audits

STRIDE & DREAD Risk Assessment

56

 STRIDE and DREAD are often used together, with STRIDE
being used for threat modeling and DREAD being used for
risk assessment.

1. STRIDE identifies and categorizes all risks based on the
data flow diagram.

2. DREAD assesses the risks and gives them a score.

3. Prioritize threats based on the score

STRIDE & DREAD Risk Assessment

57

4. Develop Mitigation strategies for each threat, starting with
the threat with the highest DREAD score.

5. Apply the strategies, then reassess the DREAD score until it
is up to the organizations standards.

6. Document all strategies and changes.

7. Perform the risk assessment regularly.

STRIDE & DREAD Risk Assessment

58

4. Develop Mitigation strategies for each threat, starting with
the threat with the highest DREAD score.

5. Apply the strategies, then reassess the DREAD score until it
is up to the organizations standards.

6. Document all strategies and changes.

7. Perform the risk assessment regularly.

Using STRIDE

59

 Understanding the Adversary’s View

❖ Identify all valuable assets and characterize system security using use cases and
misuse cases

❖ Create data flow diagrams

 Identify threats, using STRIDE’s categories

 Determine risk level

 Develop mitigation strategies

 Document all threats, risks, and mitigation strategies

Using STRIDE Example

60

 Car optimizer:
The software system is used for individuals who want to optimize their cars'
performance. The software will feature numerous makes and models of
vehicles for the user to choose from, covering all the main manufacturers.
After they choose their car, they will be able to view its performance from the
factory. In addition to the car's factory performance, they will be able to
choose different parts for their car and see how their car will perform with
the performance enhancements installed. Not only will the user be able to
see the performance of their vehicle with these new parts installed, but they
will also be able to see the cost and a guide on installation. Users will be
able to configure different vehicle specifications and see how they will
affect performance compared to how the car comes from the factory.

Use Cases (Software Requirements)

61

 USE CASES

1. Login: Includes Authentication(2FA), Mitigate Brute Force Logins, Extends Sign Up

2. View Parts: Includes view recommended parts, view price, view instructions, rate
parts, view performance gain

3. Make Car Configuration: Includes add car, share car configuration, post to gallery, save
car config, add parts

4. Manage Database: Includes backup database, optimize queries, update schema

5. View Gallery: Includes comment post, share car configuration

6. Access User Profile: Includes Modifying User Profile

7. Access System Logs

8. Logs Action (Done by time subject)

9. Manage User Access Controls

10. Address Customer Support Tickets (Customer Support)

11. Request Part Addition (Affiliates)

12. Review Content: Includes check flagged content, remove sensitive content, patrol
gallery (Moderator)

.

62

 Define all assets, users, and processes.

 Identify all potential threats.

 Rate each threat based on damage, reproducibility,
exploitability, affected users, and discoverability from 1-10

 Add all of the scores together

 Prioritize threats based on their score.

 Develop and implement mitigation strategies.

Use Case Scenarios

62

63

 Define all assets, users, and processes.

 Identify all potential threats.

 Rate each threat based on damage, reproducibility,
exploitability, affected users, and discoverability from 1-10

 Add all of the scores together

 Prioritize threats based on their score.

 Develop and implement mitigation strategies.

Use Case Scenarios

Missing
Security

Requirements

63

Misuse Cases (Addressing Security Attacks)

64

 TAMPER DATABASE

 Attack: Attackers may try to tamper with the database or system logs to manipulate them.

 Mediation: Checking access controls to ensure that unauthorized access cannot be gained. We also will
implement two factor authentication to further prevent this.

 UNAUTHORIZED LOGIN

 Attack: Attempting to gain access that they are not authorized to have

 Mediation: Checking credentials, limiting multiple login attempts, two-factor authentication

 MODIFY INPUT DATA

 Attack: Attempting to input faulty or malicious data into the database through the frontend

 Mediation: Sanitize and validate user input

 STEAL USER INFORMATION

 Attack: Attempting to view user database tables to gain access to sensitive information.

 Mediation: Access controls, encrypting stored sensitive data

 ACCESS SYSTEM LOGS

 Attack: Access and manipulate system logs

 Mediation: Access controls, two-factor authentication

65

 Define all assets, users, and processes.

 Identify all potential threats.

 Rate each threat based on damage, reproducibility,
exploitability, affected users, and discoverability from 1-10

 Add all of the scores together

 Prioritize threats based on their score.

 Develop and implement mitigation strategies.

Misuse ScenariosUse Case Scenarios

65

Creating Data Flow Diagrams (Context level)

66

 Visual model of how system processes data and what are the entry points

.

Creating Data Flow Diagrams (Level 0)

67

.

Identify Threats

68

.

Use Microsoft
Threat

Modeling Tool

69

Category: Denial Of Service

Description:

Review Content crashes, halts, stops or runs

slowly; in all cases violating an availability

metric.

Justification:

Thorough code reviews, debugging, and the

implementation of failover mechanisms to

maintain system availability in the event of a

process crash. Monitoring system performance

and promptly addressing issues through

regular maintenance can prevent prolonged

service disruptions.

Potential Process Crash or Stop for Review Content [State: Not Started] [Priority: High]

Analyze Threats using STRIDE

Using STRIDE Example

70

PostEra.ai:
PostEra.ai is a platform designed for the collaborative
development of therapeutic compounds against COVID-
19. It allows researchers and scientists to contribute their
compound designs by submitting molecular structures.
The site facilitates the collection, analysis, and
prioritization of these compounds for synthesis,
simulation and testing, providing a unique collaborative
approach to accelerate COVID-19 drug discovery​​.

71

72

73

SAST and DAST tools Question and

Answers

Continued..

74

Tools
Static Analysis
may look for generic defects, or focus on “code cleanliness”

(maintainability, style, “quality”etc.)
Some defects are security vulnerabilities
Java users: Consider quality scanners SpotBugs (successor of

FindBugs) or PMD
Cppcheck (C++, works with C)
Assign average of numbers to node.
Attacks Trees:Propagate risk values to parent nodes.
Sum risk values if child nodes are ANDed together.
Use highest risk value of all children if nodes are ORed together.

Dynamic Analysis
OWASP Zed Attack Proxy(ZAP)- Free web security tool
Penetration Testing- Combination of both Static and Dynamic

Analysis.

SAST and DAST Tools

75

● Static Analysis is a method of computer program

debugging that is done by examining the code

without executing the program.

● Static analysis process is also useful for addressing

weaknesses in source code that could lead to buffer

overflow -- a common software vulnerability.

● Static analysis is used in software engineering by

software development and quality assurance terms.

What is Static Analysis?

76

● Static Analysis is a method of computer program

debugging that is done by examining the code

without executing the program.

● Static analysis process is also useful for addressing

weaknesses in source code that could lead to buffer

overflow -- a common software vulnerability.

● Static analysis is used in software engineering by

software development and quality assurance terms.

What is Static Analysis?

77

● supports a wide variety of static checks which

includes:

○ Automatic variable checking

○ Bounds Checking for array overruns

○ Classes checking

○ Memory leaks

○ Resource leaks

○ Dead code elimination

○ Performance errors

○ Undefined variables

Dynamic Analysis

Penetration testing (pen testing)
● Pretend to be adversary, try to break in
● Depends on the skills of the pen testers
● Really a combination of static & dynamic approaches

Tools
● Often convenient to have a pre-created set of tools
● Kali Linux (successor to BackTrack):
● Linux distribution based on (widely-used) Debian
● Preinstalled with over 600 penetration-testing programs, including nmap (a

port scanner), Wireshark (a packet analyzer), and OWASP ZAP
● Can run natively when installed on a computer's hard disk, can be booted

from a live CD or live USB, or it can run within a virtual machine
● Useful for pen testing applications before release

Dynamic Analysis

78

● Reconnaissance- trying to discover domain names, gather any

set of intelligence
● Active – using the network

● Passive – not touching the network

● Scanning- port scanning, network sniffing (looking for open

port, service), vulnerability scanner, data gathering

● Gaining access to the applications, system, network (to get

access, control to the system)

● Maintaining Access- installing backdoor to maintain access,

● Covering tracks- once we get access, then we need escape the

security (clearing cache, browsing history)

5 phases of Penetration Testing

79

Conclusion

80

SSD:
1. Enables organization to anticipate threats

rather than reacting to them.
2. Prioritizes resources, allowing for an

organization to focus on the most significant
vulnerabilities first.

3. Promotes the development of secure software
4. Reduces risk and cost of a cybersecurity

incident

THANKS,

For questions, please email at
nitin.Sukhija@sru.edu

Blog:

https://bssw.io/blog_posts/secure-software-programming-
practices-and-development

	Slide 1
	Slide 2
	Slide 3: Nitin Sukhija Associate Professor and Director of Center for Cybersecurity and Advanced Computing (C2AC), LBNL affiliate, Campus Champion Leadership team, ACM SIGHPC education chapter Department of Computer Science Slippery Rock University of PA
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Tools
	Slide 76
	Slide 77
	Slide 78: Dynamic Analysis
	Slide 79
	Slide 80
	Slide 81: THANKS, For questions, please email at nitin.Sukhija@sru.edu

