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Cosmological N-Body Simulations

• Why do we run HACC (Hardware/Hybrid 
Accelerated Cosmology Code)?

• Theoretical research
– Understand how Large-Scale Structures (LSS) 

form and evolve over cosmic time
– Look for signatures of new/interesting physics

• Comparison with observations
– Grand astronomical surveys

• Rubin-LSST >$0.5B (NSF + DOE + …)
– Create mock Universes for survey design
– Provide theoretical models of summary statistics 

for data analysis (eg. emulators)
– Understand data covariance for parameter 

estimation
– Single observed Universe means forward-modeling

Rubin LSST: https://www.lsst.org/ 

https://www.lsst.org/
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HACC N-Body: Matter Distribution
• Gravity

– As the Universe expands, structure condenses from very smooth initial conditions
– Dark matter is dominant mass component and is modeled as effectively collision-

less.

Evolution of matter distribution over cosmic 
time for a sub-volume of a HACC simulation.

FarPoint: https://arxiv.org/abs/2109.01956 

https://arxiv.org/abs/2109.01956
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HACC Analysis: Halos

• Dark matter collects into “halos”

• Halos provide deep gravitational potential 
wells where baryonic matter can collect 
and eventually cool and condense to form 
stars and galaxies

• Roughly half of the mass in the Universe 
ends up in halos by our current epoch

• Halos are identified in simulations by 
looking for coherent structures with 
densities >100x of the background density

Particles in a small volume of a HACC simulation colored 
by halo membership.

HACC: https://arxiv.org/abs/1410.2805 

https://arxiv.org/abs/1410.2805
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HACC Analysis: Halo Merger Trees

• Halos interact with each other as the 
Universe evolves, colliding and merging

• The interaction history of halos is 
important because interactions between 
galaxies within halos can trigger epochs 
of star formation, and the total history of 
star formation in a galaxy determines its 
luminosity/color

• The interaction histories of halos is 
summarized in a data structure called a 
merger tree

Sultan et al. 5

3. CORE TRACKING

We have recently introduced the concept of core tracking in
cosmological simulations as an alternative to the construction
of subhalo merger trees. A detailed description of the core cat-
alog implementation is reported in Rangel et al. (2017) and
Heitmann et al. (2020). The first scientific application of core
tracking, in addition to comprehensive validation results, is dis-
cussed in Korytov et al. (2020). In this section, we provide
a brief summary of the underlying concepts and construction
techniques for the core catalogs.

3.1. Definition of Cores

The definition of a core is straightforward: For each halo
above a certain mass (the core host halo mass threshold), the
gravitational potential center is found and the set of particles
closest to the center is identified as the halo core. The num-
ber of particles that define a core is an input parameter to the
analysis set-up and is chosen with regard to the size of the sub-
structure that we aim to capture and the mass resolution of the
simulation. The values for the core host halo mass threshold
and the core size for our simulations are specified in Table 1.
For each (of the 101) analysis time snapshots, all core parti-
cles identified are stored, including their halo tag, to enable the
connection to the halo catalogs at a later stage.

In addition to the core particle files per snapshot, we also
keep track of the evolution of the core particles over time. Once
a particle has been identified as a core particle, we follow its
path for the remainder of the simulation. In totality, at each
analysis step, we record the new positions and velocities of
core particles that have been found previously and add newly
found core particles as we go along. In this way, we build up
an accumulated core particle file over time containing informa-
tion about each core particle’s evolution from its first identifica-
tion until the final time step. Storing the complete core history
is necessary to generate core catalogs (as described in Section
3.3), which track the complex formation history of identified
substructure.

3.2. Merger Trees

In order to extract the temporal evolution of the substructure
traced by core particles, halo merger trees are required. Such
trees track the hierarchical formation history of each halo over
time, recording merging events and mass accretion. The merger
trees are constructed by processing halo catalogs at adjacent
analysis snapshots. We compute the overlap of halo particles
in each snapshot pair to connect older progenitor halos with
younger descendant halos at the later timestep. Processing all
snapshots results in a complete merger tree catalog that can ex-
tract the formation history of any halo of interest.

There are many complications in merger tree construction,
with a number of papers devoted to the subject (e.g., Fakhouri
& Ma 2008, Behroozi et al. 2013, Rodriguez-Gomez et al. 2015
and Han et al. 2018). Finite mass resolution, for example, can
cause stochastic threshold effects of the smallest halos, which
are repeatedly found, lost, and re-found at masses near the halo
minimum mass threshold. We have mitigated this complication
by setting our halo finding thresholds to be below our minimum
host halo masses in our trees, effectively pruning out halos of
masses below our tracking resolution. The smallest resolved
halos in our merger trees are recorded by the core host halo
mass in Table 1.

FIG. 2.— Example halo merger tree showing the types of cores associ-
ated with halos (gray disks). Central cores (triangles) are identified when an
FOF halo is found above a preset core host halo mass threshold. As halos
merge, the central core of the most massive progenitor (MMP) is connected to
the measured central of the descendant. Cores of less massive progenitors are
designated as satellites. The ‘order’ of a satellite traces the number of previ-
ous mergers away from a MMP; cores that merged directly into a MMP halo
are labeled first-order satellites (squares), cores inherited from one generation
above an MMP merger are second-order satellites (circles), etc. This order-
ing of cores is analogous to substructure hierarchies described in the literature
(e.g., Giocoli et al. 2010; Jiang & van den Bosch 2014, 2016).

Merger tree construction is further complicated by halo ‘split-
ting’ events, where nearby (or flyby) halos are temporarily con-
sidered as one object (over-linked by an FOF finder, for exam-
ple) erroneously indicating a merger event, and are later dis-
covered to be different separate (split) objects. To avoid split-
ting effects, we have found that the construction of merger trees
is best carried out in post-processing, starting from the final
time step of interest (in our case at z = 0) and walking back-
wards in time. Thus, we are ensured that every merger tree
will be rooted by one final descendant, and we employ an artifi-
cial halo ‘fragmentation’ procedure to account for halo splitting
events. Briefly, when we detect a halo progenitor with multiple
descendants (indicating the halo split), we fragment the progen-
itor into separate halos defined by the overlapping particles of
each descendant. We then assign to each fragment a portion
of the original progenitor mass based proportionally on the de-
scendant mass, thereby conserving total mass (see Rangel et
al. 2017 for details). The resulting merger trees are devoid of
splitting events, and consistently track the formation history of
each halo.

In summary, we efficiently record the merger history of all
halos to form a connectivity tree catalog that consistently tracks
all mass that eventually ends up in the final halos of interest at
z = 0. For each object within the tree, we further store all of the
relevant halo catalog properties (mass, velocity, shape, etc.),
with adjusted values used for fragmented halos when needed.

3.3. Core Catalogs

By combining the information from core tracking, halo prop-
erties, and merger trees, one can construct core catalogs that
contain the evolution history of each core from its birth to the
final timestep. Core catalogs are analogous to subhalo merger

Logical merger tree.
SMACC: https://arxiv.org/abs/2012.09262 

https://arxiv.org/abs/2012.09262
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HACC Analysis: Halo Core Tracking

Physical trajectories of cores that merge into 1 halo.
OuterRim: https://arxiv.org/abs/1904.11970 

• Very inner part of halo is a tightly-bound 
core of particles that is not easily 
disrupted during halo-halo interactions

• Track sub-structure within halos by 
continuing to track cores even after halos 
merge

• Core positions are likely good proxies for 
galaxy locations

https://arxiv.org/abs/1904.11970
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HACC Analysis: Lightcones

• N-body simulations operate in a comoving 
gauge, observations are not in same 
gauge

• Finite speed of light, we observe objects 
as they were when the light that we are 
now collecting left the object

• Objects that are farther away have a 
longer lookback-time

• HACC runs in a fixed-sized box (in 
comoving/expanding units) with periodic 
boundary conditions, but we can create a 
lightcone around an observer by saving 
the correct spherical shell from each time 
step

Particle lightcone from a HACC simulation with observer 
at center; color indicates distance/lookback-time.

OuterRim: https://arxiv.org/abs/1904.11970 

https://arxiv.org/abs/1904.11970
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HACC Analysis: Halo Lightcones

• Construct halo merger trees to the end of 
the simulation in the entire simulation 
volume

• Can go back and figure out where a 
merger tree intersects an observer’s 
lightcone in order to display information 
from the merger tree in the right place at 
the right time

COSMODC2 7

lightcone, Smith et al. (2017) choose the merger time ran-
domly per halo progenitor, and interpolate masses between
snapshots. For cosmoDC2, we take a simpler approach,
and assume that the merger has always happened prior to
it intersecting the lightcone surface (that is, for a merging
merger tree branch that crosses the lightcone at te, we as-
sert tmerge < te in all cases). We set the position of each
halo within the lightcone by interpolating between the cur-
rent halo position and that of its most massive progenitor, re-
taining all halo properties (mass, radius, etc.) as they appear
in the later snapshot at t j+1.

Figure 3. Schematic of the interpolation process which fills the
cosmoDC2 halo lightcone. Each plane represents a projected sim-
ulation snapshot, and time increases vertically, with the observer
located at o. A merger tree branch including halo h is seen crossing
the observer’s lightcone between snapshots j and j + 1 (the purple
worldlines of each halo are unknown between the snapshots). In-
terpolation between halo h and its most massive progenitor hmmp

(orange dashed line) is used to solve for the temporal and spatial
components of event h0, where we place an object with properties
(mass, etc.) identical to halo h.

3.5. Workflow
Having described the simulations and the data products

that are generated, we now provide a final summary by
discussing the workflow for producing the inputs to the
cosmoDC2 production pipeline. The workflow diagram is
shown in Figure 4 and begins with the particle catalogs from
the smaller AlphaQ simulation and the larger Outer Rim sim-
ulation. These are both processed by the halo finder to con-
struct halo catalogs which are then input into the merger tree
builder. In the case of the Outer Rim simulation, the merger
trees are used to build halo lightcones (see Sec. 3.4) that serve
as inputs for the Empirical-Model Pipeline and provide host
halos for the galaxies in cosmoDC2. For the AlphaQ simu-
lation the merger trees are used as inputs to the Galacticus

Outer Rim  Particle 
Lightcone

Outer Rim Halo 
Lightcone

Particle-Lightcone 
Generator (§3.4)

Halo-Lightcone 
Generator (§3.4)

Outer Rim Halo 
Merger Trees

Outer Rim Particles  
(§3.1)  Halo Finder (§3.3)

AlphaQ Halo 
Catalog

AlphaQ Halo
 Merger Trees

Merger-Tree Builder 
(§3.3)

Outer Rim Halo 
Catalog

AlphaQ Particles
(§3.2)

Figure 4. Workflow to produce the Outer Rim and AlphaQ sim-
ulation data products used as inputs to the cosmoDC2 production
pipeline. Data products are shown as rectangles in dark and light
purple for data derived from the Outer Rim and AlphaQ simula-
tions, respectively. Code modules are shown as ovals in dark or-
ange. Numbers in parentheses refer to the sections in the paper
where a detailed description of the workflow component is given.

SAM that is subsequently used to build the Galacticus Li-
brary. The particle snapshots from the Outer Rim simulation
are also input into the particle-lightcone generator to produce
the inputs required for the Lensing Pipeline.

4. WEAK LENSING
Weak lensing distortions are key observables of the LSST

survey, providing constraints on the growth of cosmic struc-
ture and therefore dark energy (e.g., Mandelbaum 2018).
These distortions, which take the form of an isotropic change
in area (convergence) and an area-preserving change in shape
(shear), can be mimicked in simulations by following the
paths of photon rays as they traverse the matter field. In prac-
tice, maps of the lensing quantities are obtained as follows:
the particle lightcone is divided into discrete shells, then pho-
ton paths are traced backwards in time from an observer grid
to a ‘source’ shell, with deflections applied corresponding to
the surface density of particles at each ‘lens’ shell between
the source and observer using a ray-tracing algorithm (e.g.,
Das & Bode 2008; Hilbert et al. 2009).

The baseDC2 lensing maps are built with the pipeline pre-
sented in P. Larsen et al. (2019, in preparation). The full
workflow is illustrated in Figure 5. After we create a down-
sampled particle lightcone using the techniques described in
Sec. 3.4.1 and divide it into discrete shells, we compute the

Interpolating merger trees onto an observer’s lightcone.
CosmoDC2: https://arxiv.org/abs/1907.06530 

https://arxiv.org/abs/1907.06530
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Pre-Exascale (Early Petascale Era)

History
• Predecessor code was originally 

developed as a gravity-only 
cosmological N-body structure 
formation code written for Los Alamos 
National Laboratory's IBM 
Roadrunner supercomputer, which 
featured IBM Cell Broadband Engine 
accelerators.

Design
• Force-splitting 

– Long-range component of gravity was 
calculated with particle-mesh methods 
and a distributed-memory Fourier 
transform-based Poisson solver 
implemented in MPI.

– Short-range component of gravity 
calculated using direct particle-particle 
comparisons and implemented in C with 
intrinsics to take advantage of the FLOPS 
available on the Cell accelerators.



10 Exascale Computing Project

Gravity Force Splitting
• Hardware/Hybrid Accelerated Cosmology Code (HACC)

– Gravity is infinite and unshielded

– 1 kpc force resolution in 1 Gpc box, 10^6 dynamic range

• Operator splitting
– Kick: forces used to update particle velocities; positions fixed

• Long-range: Particle-Mesh, deposit onto grid, FFT-based Poisson 
solver, ~10^4 resolution from ~10k^3 grids, requires double precision

• Short-range: Particle-Particle interactions, FLOPS intense, maximize 
architecture, ~10^2 resolution, single precision sufficient

– Stream: velocities used to update positions; velocities fixed

– Symplectic integration

• HACC Spectral Force Handover Technology™
– Use low-order Cloud-in-Cell (CIC) deposit

– Spectral shaping reduces noise and emulates smoother deposit

– Extremely compact, ~3 grid units, limit particle comparisons

~3 grid units!!!
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HACC Design 

• Overloading (between MPI ranks)
– Each MPI rank caches a thin shell of 

particles from immediate neighbor MPI 
ranks

– No particles need to be exchanged during 
sub-cycles for short-range force 
calculation

– Refresh particle cache periodically 
between outer time steps
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Preparing for Exascale (Frontier and Aurora)

Challenges
• More increased compute capabilities 

than memory (e.g., Summit->Frontier)
– ~8x more FLOPS (peak)
– ~3x more memory

• Exascale systems will have multiple 
programming models and frameworks
– CUDA, HIP, SYCL, OpenMP, Kokkos, … 

• CPU analysis routines (on the host) 
are becoming a larger fraction of the 
overall execution time.

CRK-HACC
• Adds baryonic physics in addition to 

gravity
– New Conservative Reproducing Kernel 

(CRK) formulation of Smoothed Particle 
Hydrodynamics (SPH)

– Resolves some discrepancies with grid-
based hydrodynamic schemes

– non-radiative hydrodynamics
– sub-grid models for radiative cooling, star 

formation, and feedback from supernovae 
and Active Galactic Nuclei (AGN)
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ECP Software and Technology (ST) Projects

Collaborators
• ArborX

– Fast GPU-accelerated geometric search 
library 

• VeloC/SZ
– Low overhead checkpointing
– Lossy data compression where the error 

can be bound and controlled 

• ALPINE/ZFP
– Visualization

HACC
• ArborX

– FOF halo-finding
– AGN center-finding (hydro sub-grid)
– SOD halo-finding

• VeloC/SZ
– Checkpoint/restart
– Compressed analysis outputs
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Preparing for Aurora

• Primary and ongoing development of CRK-HACC uses CUDA, with 
HIP support (for Frontier) through macro transformations of API calls.

• SYCL was chosen by the HACC team for running on Aurora. 
• HACC would support multiple build implementations, as it has 

historically, to exploit low-level programming model features to 
achieve the best possible performance on target systems. 
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CUDA to SYCL Migration

CUDA 
Kernels

SYCLomatic

SYCL Functor 
Clang-Tool

Kernel Test 
Harness

CRK-HACC

Rapid Prototyping 
and Analysis

GPU API Wrappers
CUDA Kernels SYCL Kernels

SYCL Kernels

HIP Macros

Semi-automated 
Migration Pipeline
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Adiabatic Hydro Simulation on Sunspot (Aurora TDS)

Credit: Silvio Rizzi, Argonne LCF



Performance, Portability, and Productivity Study, 
using SYCL

Paper to appear in the P3HPC Workshop as part of SC23
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Experimental Setup

Hardware Configuration for Systems

System CPU GPU FP32 Peak 
per GPU 

Aurora 2 x Intel® 
Xeon® CPU 
Max 9470C, 
52 cores 

6 x Intel® Data 
Center GPU 
Max 1550

45.9 TFLOPS 

Polaris 1 x AMD 
EPYC 7543P, 
32 cores

4x NVIDIA 
A100-SXM4-
40GB

19.5 TFLOPS 

Frontier 1 x AMD 
EPYC 7A53, 
64 cores 

4 x AMD 
Instinct 
MI250X 

53 TFLOPS 

Problem Size
2x 5123 particles 

5 timesteps (4 fixed sub-cycles)

8 MPI ranks

Aurora: 1 rank/tile

Polaris: 2 ranks/GPU  
note: measured ∼11% lower efficiency 

Frontier: 1 rank/GCD

18
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Initial Results

Aggregate of all GPU Kernels

Frontier Polaris Aurora
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• Fast Math optimizations were not enabled by 
default on all compilers.

• Frontier HIP code uses a wavefront size of 64, 
and the SYCL code uses a sub-group size of 64 

• Polaris CUDA code uses a warp size of 32, and the 
SYCL code uses a sub-group size of 32 

• Aurora SYCL code uses a sub-group size of 32 
and/or 16

19

Performance results are based on testing dates and configurations used and may not reflect all publicly available updates.
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Optimizations to GPU (solver) Kernels

Hotspot Kernels
1. Geometry: measures the volumes of gas particles 

2. Corrections: computes the reproducing kernel 
coefficients of the higher order smoothed particle 
hydrodynamics (SPH) solver

3. Extras: evaluates the density and state gradients

4. Acceleration: calculates the momentum derivative

5. Energy: solves the derivative of the internal energy. 

The SIMD lane data layout of the “half-warp” algorithm. 
Lanes [0-15] load and update particles from leaf A, while 
lanes [16-31] operate on particles from leaf B. 

10/10/23 20
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Optimizing Cross-lane Communication

• The communication pattern of the “half-warp” 
algorithm for interacting particles from leaves A 
and B within the same warp. 

• This represents one of the total (|𝐿𝑒𝑎𝑓𝐴| × 
|𝐿𝑒𝑎𝑓𝐵|/𝑤𝑎𝑟𝑝_𝑠𝑖𝑧𝑒) instances required. 

• The pair-wise symmetry is critically important for 
the correctness of the algorithm 

• XOR-based shuffle pattern implemented as the 
__shfl intrinsic for CUDA 
sycl::select_from_group in SYCL

21
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Optimizing Cross-lane Communication

Intel® Data Center GPU Max 1550 assembly snippets for 
sycl::select-from-group
Elements are gathered from the registers specified in a0 and written into r2 
using indirect register access 
...
shl (16|M0)  r24.0<1>:uw  r82.0<2;1,0>:uw  0x2:uw   
add (16|M0)  a0.0<1>:uw   r24.0<1;1,0>:uw  0x640:uw 
mov (16|M0)  r2.0<1>:ud   r[a0.0]<1,0>:ud
...

alternative instruction sequence employing register regioning is more performant 
but not always achievable by the compiler
...
add (16|M0)  r24.0<1>:f  r68.0<1;1,0>:f  -r14.0<0;1,0>:f 
add (16|M0)  r26.0<1>:f  r68.0<1;1,0>:f  -r14.1<0;1,0>:f
add (16|M0)  r30.0<1>:f  r68.0<1;1,0>:f  -r14.2<0;1,0>:f
...

Cross-lane Communication Strategies explored 
• Shared Local Memory

– Uses sycl::local_accessor to reserve a small amount 
of work-group local memory per sub-group to 
communicate instead of via registers. 

• Broadcasts
– Restructure loops so that sufficient information is 

known about the communication pattern at 
compile-time to generate more efficient 
assembly.

• Optimized Instruction Sequences (Intel)
– Explicitly code the assembly instructions for each 

communication step needed. 

22
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Optimizing Cross-lane Communication (Intel)

Specialized butterfly-shuffle communication pattern, 
which provides the same pair-wise symmetry property of 
the XOR-based pattern Register view of the specialized butterfly-shuffle 

23

Efficiently performed with 4 mov instructions
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Optimization Results (Hotspot Kernels)

Aurora
Intel® Data Center GPU Max 1550
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• Broadcast uses a sub-group size of 16, all 
other variants use a sub-group size of 32

• Restructuring the loops to use broadcasts also 
allows us to generate fewer atomic instructions, 
more noticeable in the Extras and Corrections 
kernels

24

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See slide 4 for configuration details.

Performance results are based on testing dates and configurations used and may not reflect all publicly available updates.
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Optimization Results (Hotspot Kernels)

Polaris
NVIDIA A100-SXM4-40GB
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Performance results are based on testing dates and configurations used and may not reflect all publicly available updates.
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Performance Portability Analysis
Cascade plot of application efficiency and performance portability of CRK-HACC variants. 
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where 𝑎 is an application, 𝑝 is a specific input 
problem, 𝐻 is the set of platforms of interest, and 
𝑒𝑖 (𝑎, 𝑝 ) is the efficiency with which application 𝑎 
solves problem 𝑝 on platform 𝑖 

application efficiency is calculated relative to a 
hypothetical application that is able to use the 
best version of each kernel on every platform
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Productivity Analysis

A navigation chart showing the performance portability 
and code convergence of CRK-HACC variants 
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where 𝑑𝑖,𝑗 (𝑎, 𝑝) represents the distance 
between the source code required to solve 
problem 𝑝 using application 𝑎 on platforms 𝑖 
and 𝑗 (from platform set 𝐻 ). 
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Disclaimers

• Performance varies by use, configuration and other factors. 
Learn more at https://www.intel.com/performanceindex 

• Performance results are based on testing as of dates shown in configurations and may 
not reflect all publicly available updates.  See Slide 4 for configuration details. No 
product or component can be absolutely secure. Intel does not control or audit third-
party data.  You should consult other sources to evaluate accuracy.

• Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel 
Corporation or its subsidiaries. Other names and brands may be claimed as the property 
of others. Khronos is a registered trademark and SYCL and SPIR are trademarks of The 
Khronos Group Inc. 

• No license (express or implied, by estoppel or otherwise) to any intellectual property 
rights is granted by this document, with the sole exception that code included in this 
document is licensed subject to the Zero-Clause BSD open source license (OBSD), 
http://opensource.org/licenses/0BSD. 

10/6/23 28

https://www.intel.com/performanceindex
http://opensource.org/licenses/0BSD
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Conclusion

• HACC has introduced new physics (hydrodynamics and sub-grid modeling) into the simulation 
capabilities, made possible with the increased computing power of Exascale supercomputers.

• Described a process to migrate and maintain a CUDA codebase to SYCL

• Identified that “shuffle” operations are not performance-portable from NVIDIA to Intel GPUs

• Developed a straightforward workaround to replace “shuffles” with local memory operations that 
can be generally useful to other developers. 

• Demonstrated the practical potential for writing performance portable applications in SYCL 
ultimately achieving a performance portability of 0.96 with near-zero code divergence -- and a 
pure SYCL implementation performance portability of 0.91. 
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Key Takeaways

• Code (outside solvers), e.g., in situ analysis, are becoming 
bottlenecks and need GPU acceleration. 

• The increased complexity of code makes maintaining multiple 
implementations more burdensome and highlights the need for 
performance-portable programming models.

• The SYCL version of CRK-HACC is an exciting proof-of-concept for 
using a single programming model across GPUs from Intel, NVIDIA, 
and AMD without sacrificing performance.
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