
Facilitating Electronic Structure Computations
on GPU based Exascale Platforms
Jean-Luc Fattebert
Computational Sciences and Engineering Division, Oak Ridge National Laboratory

Team:
Los Alamos National Laboratory: Christian F. A. Negre, Michael E. Wall, Jamal Mohd-Yusof,

Joshua Finkelstein, Yu Zhang
Lawrence Livermore National Laboratory: Daniel Osei-Kuffuor
External: Nick Bock (Canonical)

Funded under Co-design Center for Particle Applications (CoPA) project (PI: S. Mniszewski, LANL)

The Exascale Computing Project (ECP)
Project Number: 17-SC-20-SC

www.ExascaleProject.org

http://www.exascaleproject.org/

2 Exascale Computing Project

Outline

• Motivations
• Computational strategy for Exascale hardware

– OpenMP offload
– Vendor libraries (cuSparse, RocSparse, MKL,…) and others (MAGMA,…)

• Solvers
– Chebyshev dense solver on GPU
– Distributed

• Some lessons learned

3 Exascale Computing Project

Algorithms and performance portability for electronic
structure
• Provide a library to handle the most expensive

part of (some) electronic structure codes
– Computation of single particle Density Matrix −

Projector onto subspace associated with lowest
eigenvalues of Hamiltonian

• Provide a library that can handle various matrix
formats (dense, sparse, distributed) on various
hardware (multi-core CPUs, GPUs, multi-
nodes)
– Users can explore algorithms with various matrix

formats
– Users don’t need to worry about implementation

4 Exascale Computing Project

Speeding up electronic structure calculations to enable
larger molecular dynamics (MD) simulations
• Time-to-solution is the limiting factor

in ab initio molecular dynamics
– How long are we willing to wait for tens

of thousands of steps to complete?

• Using the power of GPUs to
accelerate these simulations is not an
easy task
– We need enough concurrent operations

to use GPU efficiently
– Larger problems can use GPU resources

better, but may lead to time-to-solution
that is too long…

Ti
m

e-
to

-s
ol

ut
io

n

Problem size

O(N3)

O(N)

Acceptable time-
to-solution

GPU acceleration

5 Exascale Computing Project

Distributing work on several GPUs

• Needs very large problems
– Each GPU needs enough work to be well utilized

• Time-to-solution in large problems may be too long for MD…

It is difficult to take advantages of
multiple-GPUs to speedup Quantum

MD

6 Exascale Computing Project

Running MD on exascale platforms

• ECP Application Exascale Atomistic Capability for Accuracy, Length,
and Time (EXAALT)
– Running many MD simulations concurrently

LAMMPS

LATTE

PROGRESS

BML

ParSplice

Molecular Dynamics

Compute atomic forces at quantum level (Tight-Binding)

Density Matrix solvers

Implements matrix operations kernels

Launches multiple independent replicas of physical system

Single GPU

7 Exascale Computing Project

Main numerical kernels for electronic structure
calculations

• Eigensolver (Dense)
– Eigenvectors of Hamiltonian corresponding to lowest eigenvalues
– (For insulators) ➜ projector onto space of occupied orbitals

– P is a symmetric matrix with eigenvalues in [0,1]
– Special case (insulators):

• P is a projector on subspace spanned by eigenvectors associated with
lowest eigenvalues

𝑃𝑃 = 𝑉𝑉𝐹𝐹𝐹𝐹𝑇𝑇Hamiltonian H
(symmetric/Hermitian)

Eigenvalues/
eigenvectors

𝜀𝜀𝑖𝑖 , 𝑣𝑣𝑖𝑖

𝑓𝑓 𝜀𝜀𝑖𝑖 =
1

1 + 𝑒𝑒𝛽𝛽 𝜀𝜀𝑖𝑖−𝜇𝜇

𝐹𝐹 =
𝑓𝑓(𝜀𝜀1) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑓𝑓(𝜀𝜀𝑁𝑁)

𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 < 𝜇𝜇 < 𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝐻𝐻𝑣𝑣𝑖𝑖 = 𝜀𝜀𝑖𝑖 𝑣𝑣𝑖𝑖

8 Exascale Computing Project

Underwhelming performance of dense diagonalization on
GPU…
• Relative time-to-solution

compared to dense matrix-
matrix multiplication (dgemm)
performance
– Using Lapack dsyevd on CPU
– Using MAGMA dsyevd_gpu on

GPU

• Similar number of flops but
large differences in time-to-
solution, specifically for
GPUs!

dsyevd: divide &
conquer version of
dense diagonalization
implemented in Lapack
and MAGMA

9 Exascale Computing Project

Developing alternative solvers based on polynomials of
matrices

• Iterative solver SP2 for systems with band gap

• Chebyshev polynomial expansion of density matrix for metals

𝑓𝑓 𝜀𝜀 =
1

1 + 𝑒𝑒𝛽𝛽 𝜀𝜀−𝜇𝜇

𝑓𝑓𝐻𝐻 𝐻𝐻 = 𝐼𝐼 + 𝑒𝑒𝛽𝛽 𝐻𝐻−𝜇𝜇𝜇𝜇 −1

≈�
𝑖𝑖=1

𝑁𝑁

𝑐𝑐𝑖𝑖𝑇𝑇𝑖𝑖 𝐻𝐻

Fermi-Dirac function

with initial guess 𝑋𝑋0 =
𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼 − 𝐻𝐻
𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚

[Niklasson, Phys. Rev. B (2002)]

[Goedecker and Teter, Phys. Rev. B (1995)]

10 Exascale Computing Project

Many of these ideas were introduced to reduce
complexity from O(N3) to O(N)
• Full diagonalization in O(N3)
• “Sparse matrix × sparse matrix” multiplication

is O(N)
– O(N) solver provided one can drop off “small” off-

diagonal terms that creep in at every iteration

• On GPUs, dense versions of these solvers
are competitive with direct diagonalization

SP2 vs. cuSolver on Nvidia V100
[Mniszewski et al., IJHPCA, 2021]

Fastest algorithm on GPU may not be the fastest on CPU

PROGRESS and BML libraries

12 Exascale Computing Project

Implementation divided into two libraries

• BML: Basic Matrix Library
– Linear algebra matrix operations used in solvers
– https://github.com/lanl/bml

• PROGRESS: Parallel, Rapid O(N) and Graph-based Recursive
Electronic Structure Solvers
– Solvers: SP2, Chebyshev, …
– https://github.com/lanl/qmd-progress

13 Exascale Computing Project

Using OpenMP for GPU offloading

• OpenMP, an implementation of multithreading
– simple and flexible interface for developing parallel (shared

memory) applications

• Usage
– Add pragmas to C/C++/Fortran loop

• OpenMP 4.5 and beyond
– Support for offloading to GPU

• Portable
– Supported by many compilers
– Turned on with compiler option

#pragma omp target map(from: b) map(to:a)
#pragma omp teams distribute parallel for
for (int i = 0; i < 1000; i++){

b[i] = 2 * a[i];
}

14 Exascale Computing Project

GPU Offload strategy in BML

• Initial plan was to use ‘pure’ OpenMP offload
• Experience

– Poor performance on critical kernels (sparse-sparse multiply)
– Do not expect OpenMP to allow fine-grain tuning needed any time soon…

• Current strategy is a hybrid offload programming model
– OpenMP offload semantics for memory management, data motion
– Vendor/hardware-specific libraries for critical kernels
– Some OpenMP native code for non-critical kernels

15 Exascale Computing Project

General implementation strategy

• CPU
– C + OpenMP + MPI + BLAS/Lapack/ScaLapack

• GPU
– OpenMP offload (OpenMP4.5)
– Rely on MAGMA, ELPA and vendor libraries for performance critical kernels

16 Exascale Computing Project

Computer Science challenges

• Support various architectures
– GPU: NVIDIA, AMD, Intel
– no portable library for sparse × sparse matrix multiplication

• Interfaces with various vendor libraries
– cuSparse, cuSolver, rocSparse, rocSolver, MAGMA, MKL, ScaLapack,

ELPA,…
– We do the work so that users don’t need to understand interfaces to these

packages…

• Make OpenMP offload and various libraries coexist
– Deal with changes in software stack, compiler versions,…

17 Exascale Computing Project

PROGRESS/BML Software stackElectronic Structure Software (LATTE, MGmol, DFTB+….)

PROGRESS Solver Library (SP2,…)

Fortran API

DENSE ELLPACK ELLBLOCK

BML Methods

BLAS LAPACK

MKL
OpenBLAS

ESSLSMP

CPU LIBRARIES GPU LIBRARIES

CSR

distributed2d

ScaLAPACK

oneMKL

MAGMA

OpenMP

ELPA

OpenMP 4.5MPI

rocSOLVERcuSOLVER

rocSparse

cuSparse

18 Exascale Computing Project

BML: supported (shared memory) matrix formats
• Dense
• ELLPACK
• CSR
• ELLBLOCK

Focus for GPU offload

19 Exascale Computing Project

BML: Supporting multiple data types in a C code

• Single precision
• Double precision
• Optional:

– Single-precision complex
– Double-precision complex

• Strategy
– Compile (mostly) same C code several times with different C macros

“k-points” calculations
for periodic systems

20 Exascale Computing Project

BML: Fortran interface is important for targeted
application codes
• Hand-coded wrapper functions
• Not “automatic,” but low overhead in code writing
• Interface relatively stable

21 Exascale Computing Project

BML: Unit test/Continuous integration

• Over 1,000 unit tests
– including four different data types and five matrix formats
– Ctest for developers

• Continuous Integration
– Pull Requests tested on CPUs with github
– on GPU using Ascent @ Oak Ridge Leadership Computing Facility (OLCF)

• Currently testing dense format using MAGMA

• Tracking “issues” on github

Offloading to GPU

23 Exascale Computing Project

Offloading strategy

• Dense format on Nvidia and AMD
– Rely on MAGMA
– Use some vendor libraries when better performing (example: dense

diagonalization in cuSolver)

• Dense format on Intel and Sparse formats on Nvidia, and AMD
– OpenMP for memory allocation, CPU-GPU data transfer and various other

operations
– Use vendor libraries for performance critical kernels

24 Exascale Computing Project

GPU offloading with OpenMP

• Matrices are “C struct”
• Mapping to GPU matrix data only, not the whole struct

– Pointer to datatype

– Full control of data movement between CPU and GPU

REAL_T *A_matrix = (REAL_T*)A->matrix;
#pragma omp target enter data map(alloc:A_matrix[0,sizea])
#pragma omp target update to (A_matrix[0:sizea])

25 Exascale Computing Project

Challenges in interfacing with optimized vendor libraries

• Data mapping between BML ELLPACK and vendor sparse formats
(CSR) on device

• Some functions in libraries require data to be “ordered” in each row
• cuSparse

– Workspace required is so large, makes it not practical (CUDA11)
– implementation of: C’ = 𝛼𝛼A*B + 𝛽𝛽C expects sparsity pattern of C and A*B to be

consistent with each other

CSR2Ellpack

Ellpack2CSR

Vendor CSR

26 Exascale Computing Project

Using a synthetic Hamiltonian matrix for Performance
Benchmarking

• Typical benchmarking requires storing large matrices
• There are no good standard benchmark suite for performance in

electronic structure
• We use a synthetic Hamiltonian based on a simple two-orbitals/atom

Tight-Binding model
– Parameters for coupling, onsite energies, distance exponential decay,

random noise factor

27 Exascale Computing Project

rocSPARSE performance on Crusher @ OLCF

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5000 10000 15000 20000 25000

R
un

 T
im

e
(m

s)

Soft Matter Matrix Size (N)

rocSPARSE DM Build Timings on Crusher

CPU 8 threads

Offload GPU

rocSPARSE
initial
rocSPARSE final

Profiling, fixing
implementation issues

Chebyshev expansions for modest
matrix sizes (metals)

www.ExascaleProject.org

http://www.exascaleproject.org/

29 Exascale Computing Project

Chebyshev expansion of Density Matrix

• An alternative to inefficient dense diagonalization on GPU is to use a
Chebyshev polynomial expansion

• Problem
– Expansion can involve over 100 terms and be computationally very costly too

Exascaleproject.org

�
𝑛𝑛

𝑐𝑐𝑛𝑛𝑇𝑇𝑛𝑛 𝐻𝐻 ≈ 𝑓𝑓(𝐻𝐻)

𝐷𝐷 = (𝐼𝐼 + 𝑒𝑒𝛽𝛽 𝐻𝐻−𝜇𝜇𝜇𝜇)−1 = 𝑓𝑓(𝐻𝐻)

30 Exascale Computing Project

Patterson and Stockmeyer trick
[SIAM J. Sci. Comput. 1973]
• For 𝑘𝑘𝑚𝑚 number of terms, 𝑘𝑘−1+𝑚𝑚−2

multiplications for 𝑥𝑥 needed
• So, for 𝐾𝐾 terms in an expansion,

only need ~2√𝐾𝐾 multiplications of
𝐻𝐻

• Substantial savings when x is a
matrix and cost dominated by
matrix multiplications!

• Adapted for Chebyshev and DM
calculation

Exascaleproject.org

[Liang, Baer, Saravanan, Shao, Bell, Head-Gordon, J. Comput. Phys. (2004)]

31 Exascale Computing Project

Chebyshev expansion compared to direct diagonalization

• Time-to-solution on Nvidia V100
– Baseline is cuSolver
– Speedup more important for smaller

matrices

Diagonalization faster than Chebyshev

Chebyshev much faster than Diagonalization

32 Exascale Computing Project

1
2
3
4

stream

Exploiting GPU concurrency in calculating Chebyshev
terms
• For “small” matrices, a single

matrix-matrix multiplication does
not fully utilize a GPU

• Several Chebyshev terms can
be computed concurrently and
use GPU streams for an
additional speedup

𝐻𝐻 𝐻𝐻2
𝐻𝐻4
𝐻𝐻3

𝐻𝐻7
𝐻𝐻6
𝐻𝐻5

𝐻𝐻8

⋯

Distributing computation

1. D&C based on matrix elements
2. Distributed Linear Algebra

34 Exascale Computing Project

Graph-based distributed solver implemented in PROGRESS

• Computations are distributed following a divide
and conquer (D&C) approach

• Automatic and adaptive partitioning of matrix
using graph-based thresholding

• Sub-systems solved concurrently using single-
node solvers developed in project

• O(N) for given threshold/subsystem size

[Niklasson, Anders M. N., Susan M. Mniszewski, Christian F. A. Negre, Marc J. Cawkwell, Pieter J. Swart, Jamal Mohd-Yusof, Timothy C.
Germann, et al. 2016. “Graph-Based Linear Scaling Electronic Structure Theory.” The Journal of Chemical Physics 144 (23): 234101.]

35 Exascale Computing Project

Balancing computational cost and accuracy with matrix
thresholding

36 Exascale Computing Project

Distributed BML format: “distributed2d”

• 2D matrix decomposition using MPI
– P x P tasks layout
– Square submatrices

• Each submatrix is a “shared memory” BML matrix
– Leverage developments for shared memory formats

A

struct bml_matrix_distributed2d_t
{

bml_matrix_t *matrix;
MPI_Comm comm;
int ntasks;
int nprows;
int npcols;
int myprow;
int mypcol;
int mpitask;
…

}

Local sub-matrix in dense,
ellpack, csr, ellblock format

37 Exascale Computing Project

A non-intrusive implementation
• “Wrapper” calling sub-matrix operations when possible

– “distributed2d” operations combinations of “shared memory” matrix operations
– Shared memory code untouched

• Some operations simply need reduction at the end
– Frobenius norm,…

• Some operations require substantial communications
– multiplication, transpose,…

• Some operation are more intrusive
– Bounds on eigenvalues using Gershgorin circles

• Some operations are beyond scope
– Eigensolver: interface with existing solver (ScaLapack and ELPA)

38 Exascale Computing Project

Distributed BML format: matrix-matrix multiplication

• Implemented Cannon’s algorithm for matrix-matrix multiplication
– P-length loop over matrix blocks
– 2 point-to-point communications at each step

• “shift” blocks to enable computation of local block in product

C01 = A00 x B01 + A10 x B11

A B

What about wavefunction-based
solver? (Planewaves…)

40 Exascale Computing Project

Numerical Discretization of DFT problem

• Plane-Waves or Finite Differences
– Large number of degrees of freedom (DOF) /

electronic wave function

• Solution
– M x N “tall-and-skinny” matrix of coefficients
– Number of DOF/ wave function M ∼1,000 x number of

wave functions N

• Hamiltonian very sparse, but very large!
M

N

41 Exascale Computing Project

Eigenvalue problem in wavefunction-based solver (Plane
Waves,…)
• Project eigenvalue problem into smaller dimension to compute

Density Matrix
– Solve eigenvalue problem

• Build new trial eigenvectors of H

• Update wave functions using preconditioned gradient

→ 𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆ΛΨ𝑇𝑇𝐻𝐻𝐻𝐻𝐻 = Ψ𝑇𝑇 Ψ𝑉𝑉Λ

Ψ → Ψ𝑉𝑉

Generalized dense eigenvalue problem

Small problem
compared to basis

set size!

Ψ → Ψ− �𝐾𝐾𝐾𝐾

Wavefunctions
define smaller

dimension space

42 Exascale Computing Project

Proxy-app: Loewdin orthogonalization

• Distributed computation of
Gram matrix S = Ψ𝑇𝑇Ψ

• Accumulate S on each GPU
(communication)

• compute 𝑆𝑆−1/2 on each GPU
(replicated computation)

• Apply 𝑆𝑆−1/2 to Ψ

−1/2

=

= +…++

Diagonalization would
involve the same

operations!

43 Exascale Computing Project

Parallel scaling/performance on Summit

• Matrix 3,000,000 x 3,000
• Dense iterative solver converges

in 7 iterations
• Time-to-solution better than 1 s
• Collective communications using

NCCL library

[Lupo Pasini, Turcksin, Ge, Fattebert, Parallel Computing (2020)]

Dense
diagonalization is

bottleneck in strong
scaling limit!

44 Exascale Computing Project

Lesson learned: Efficiently using GPUs requires a lot of
work!
• OpenMP alone not always sufficient to get “good” performance
• Relying on vendor libraries can help

– requires understanding well interfaces, requirements,… for each library

• Building a software stack supporting multiple GPUs and third-party
libraries is a challenging task
– there are still a number of Computer Science challenges on exascale

architectures…

• More GPU-friendly algorithms can provide substantial speedup on
GPU accelerators and enable faster time-to-solution in electronic
structure calculations

Acknowledgments
This work was performed at Lawrence Livermore National Laboratory under U.S.
Government Contract DE-AC52-07NA27344, Oak Ridge National Laboratory under
U.S. Government Contract DE-AC05-00OR22725, Los Alamos National Laboratory
under U.S. Government Contract 89233218NCA000001.

This research was supported by the Exascale Computing Project
(http://www.exascaleproject.org), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Project Number: 17-SC-20-SC

www.ExascaleProject.org

http://www.exascaleproject.org
http://www.exascaleproject.org/

	Facilitating Electronic Structure Computations on GPU based Exascale Platforms
	Outline
	Algorithms and performance portability for electronic structure
	Speeding up electronic structure calculations to enable larger molecular dynamics (MD) simulations
	Distributing work on several GPUs
	Running MD on exascale platforms
	Main numerical kernels for electronic structure calculations
	Underwhelming performance of dense diagonalization on GPU…
	Developing alternative solvers based on polynomials of matrices
	Many of these ideas were introduced to reduce complexity from O(N3) to O(N)
	PROGRESS and BML libraries
	Implementation divided into two libraries
	Using OpenMP for GPU offloading
	GPU Offload strategy in BML�
	General implementation strategy
	Computer Science challenges
	PROGRESS/BML Software stack
	BML: supported (shared memory) matrix formats
	BML: Supporting multiple data types in a C code
	BML: Fortran interface is important for targeted application codes
	BML: Unit test/Continuous integration
	Offloading to GPU
	Offloading strategy
	GPU offloading with OpenMP
	Challenges in interfacing with optimized vendor libraries
	Using a synthetic Hamiltonian matrix for Performance Benchmarking
	rocSPARSE performance on Crusher @ OLCF
	Chebyshev expansions for modest matrix sizes (metals)
	Chebyshev expansion of Density Matrix
	Patterson and Stockmeyer trick �[SIAM J. Sci. Comput. 1973]
	Chebyshev expansion compared to direct diagonalization
	Exploiting GPU concurrency in calculating Chebyshev terms
	Distributing computation
	Graph-based distributed solver implemented in PROGRESS
	Balancing computational cost and accuracy with matrix thresholding
	Distributed BML format: “distributed2d”
	A non-intrusive implementation
	Distributed BML format: matrix-matrix multiplication
	What about wavefunction-based solver? (Planewaves…)
	Numerical Discretization of DFT problem
	Eigenvalue problem in wavefunction-based solver (Plane Waves,…)
	Proxy-app: Loewdin orthogonalization
	Parallel scaling/performance on Summit
	Lesson learned: Efficiently using GPUs requires a lot of work!
	Acknowledgments

