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2 Exascale Computing Project

Outline

• Motivations
• Computational strategy for Exascale hardware

– OpenMP offload
– Vendor libraries (cuSparse, RocSparse, MKL,…) and others (MAGMA,…)

• Solvers
– Chebyshev dense solver on GPU
– Distributed

• Some lessons learned



3 Exascale Computing Project

Algorithms and performance portability for electronic 
structure
• Provide a library to handle the most expensive 

part of (some) electronic structure codes
– Computation of single particle Density Matrix −

Projector onto subspace associated with lowest 
eigenvalues of Hamiltonian

• Provide a library that can handle various matrix 
formats (dense, sparse, distributed) on various 
hardware (multi-core CPUs, GPUs, multi-
nodes)
– Users can explore algorithms with various matrix 

formats
– Users don’t need to worry about implementation
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Speeding up electronic structure calculations to enable 
larger molecular dynamics (MD) simulations
• Time-to-solution is the limiting factor 

in ab initio molecular dynamics
– How long are we willing to wait for tens 

of thousands of steps to complete?

• Using the power of GPUs to 
accelerate these simulations is not an 
easy task
– We need enough concurrent operations 

to use GPU efficiently
– Larger problems can use GPU resources 

better, but may lead to time-to-solution 
that is too long…
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Distributing work on several GPUs

• Needs very large problems
– Each GPU needs enough work to be well utilized

• Time-to-solution in large problems may be too long for MD… 

It is difficult to take advantages of 
multiple-GPUs to speedup Quantum 

MD
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Running MD on exascale platforms

• ECP Application Exascale Atomistic Capability for Accuracy, Length, 
and Time (EXAALT)
– Running many MD simulations concurrently

LAMMPS

LATTE

PROGRESS

BML

ParSplice

Molecular Dynamics

Compute atomic forces at quantum level (Tight-Binding)

Density Matrix solvers

Implements matrix operations kernels

Launches multiple independent replicas of physical system

Single GPU
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Main numerical kernels for electronic structure 
calculations

• Eigensolver (Dense)
– Eigenvectors of Hamiltonian corresponding to lowest eigenvalues
– (For insulators) ➜ projector onto space of occupied orbitals

– P is a symmetric matrix with eigenvalues in [0,1]
– Special case (insulators): 

• P is a projector on subspace spanned by eigenvectors associated with 
lowest eigenvalues

𝑃𝑃 = 𝑉𝑉𝐹𝐹𝐹𝐹𝑇𝑇Hamiltonian H
(symmetric/Hermitian)

Eigenvalues/
eigenvectors

𝜀𝜀𝑖𝑖 , 𝑣𝑣𝑖𝑖

𝑓𝑓 𝜀𝜀𝑖𝑖 =
1

1 + 𝑒𝑒𝛽𝛽 𝜀𝜀𝑖𝑖−𝜇𝜇

𝐹𝐹 =
𝑓𝑓(𝜀𝜀1) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑓𝑓(𝜀𝜀𝑁𝑁)

𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 < 𝜇𝜇 < 𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝐻𝐻𝑣𝑣𝑖𝑖 = 𝜀𝜀𝑖𝑖 𝑣𝑣𝑖𝑖
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Underwhelming performance of dense diagonalization on 
GPU…
• Relative time-to-solution 

compared to dense matrix-
matrix multiplication (dgemm) 
performance
– Using Lapack dsyevd on CPU
– Using MAGMA dsyevd_gpu on 

GPU

• Similar number of flops but 
large differences in time-to-
solution, specifically for 
GPUs!

dsyevd: divide & 
conquer version of 
dense diagonalization 
implemented in Lapack
and MAGMA
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Developing alternative solvers based on polynomials of 
matrices

• Iterative solver SP2 for systems with band gap

• Chebyshev polynomial expansion of density matrix for metals

𝑓𝑓 𝜀𝜀 =
1

1 + 𝑒𝑒𝛽𝛽 𝜀𝜀−𝜇𝜇

𝑓𝑓𝐻𝐻 𝐻𝐻 = 𝐼𝐼 + 𝑒𝑒𝛽𝛽 𝐻𝐻−𝜇𝜇𝜇𝜇 −1

≈�
𝑖𝑖=1

𝑁𝑁

𝑐𝑐𝑖𝑖𝑇𝑇𝑖𝑖 𝐻𝐻

Fermi-Dirac function

with initial guess 𝑋𝑋0 =
𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼 − 𝐻𝐻
𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚

[Niklasson, Phys. Rev. B (2002)]

[Goedecker and Teter, Phys. Rev. B (1995)]
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Many of these ideas were introduced to reduce 
complexity from O(N3) to O(N)
• Full diagonalization in O(N3)
• “Sparse matrix × sparse matrix” multiplication 

is O(N)
– O(N) solver provided one can drop off “small” off-

diagonal terms that creep in at every iteration

• On GPUs, dense versions of these solvers 
are competitive with direct diagonalization

SP2 vs. cuSolver on Nvidia V100
[Mniszewski et al., IJHPCA, 2021]

Fastest algorithm on GPU may not be the fastest on CPU



PROGRESS and BML libraries
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Implementation divided into two libraries

• BML: Basic Matrix Library
– Linear algebra matrix operations used in solvers 
– https://github.com/lanl/bml

• PROGRESS: Parallel, Rapid O(N) and Graph-based Recursive 
Electronic Structure Solvers
– Solvers: SP2, Chebyshev, …
– https://github.com/lanl/qmd-progress
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Using OpenMP for GPU offloading

• OpenMP, an implementation of multithreading
– simple and flexible interface for developing parallel (shared 

memory) applications

• Usage
– Add pragmas to C/C++/Fortran loop

• OpenMP 4.5 and beyond
– Support for offloading to GPU

• Portable
– Supported by many compilers
– Turned on with compiler option

#pragma omp target map(from: b) map(to:a)
#pragma omp teams distribute parallel for
for (int i = 0; i < 1000; i++){

b[i] = 2 * a[i];
}
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GPU Offload strategy in BML

• Initial plan was to use ‘pure’ OpenMP offload 
• Experience

– Poor performance on critical kernels (sparse-sparse multiply)
– Do not expect OpenMP to allow fine-grain tuning needed any time soon…

• Current strategy is a hybrid offload programming model
– OpenMP offload semantics for memory management, data motion
– Vendor/hardware-specific libraries for critical kernels
– Some OpenMP native code for non-critical kernels



15 Exascale Computing Project

General implementation strategy

• CPU
– C + OpenMP + MPI + BLAS/Lapack/ScaLapack

• GPU
– OpenMP offload (OpenMP4.5)
– Rely on MAGMA, ELPA and vendor libraries for performance critical kernels
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Computer Science challenges

• Support various architectures
– GPU: NVIDIA, AMD, Intel
– no portable library for sparse × sparse matrix multiplication

• Interfaces with various vendor libraries 
– cuSparse, cuSolver, rocSparse, rocSolver, MAGMA, MKL, ScaLapack, 

ELPA,…
– We do the work so that users don’t need to understand interfaces to these 

packages…

• Make OpenMP offload and various libraries coexist
– Deal with changes in software stack, compiler versions,…
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PROGRESS/BML Software stackElectronic Structure Software (LATTE, MGmol, DFTB+….)

PROGRESS Solver Library (SP2,…)

Fortran API

DENSE ELLPACK ELLBLOCK

BML Methods

BLAS LAPACK

MKL
OpenBLAS

ESSLSMP

CPU LIBRARIES GPU LIBRARIES

CSR

distributed2d

ScaLAPACK

oneMKL

MAGMA

OpenMP

ELPA

OpenMP 4.5MPI

rocSOLVERcuSOLVER

rocSparse

cuSparse
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BML: supported (shared memory) matrix formats
• Dense
• ELLPACK
• CSR 
• ELLBLOCK

Focus for GPU offload
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BML: Supporting multiple data types in a C code

• Single precision
• Double precision
• Optional:

– Single-precision complex
– Double-precision complex

• Strategy
– Compile (mostly) same C code several times with different C macros

“k-points” calculations 
for periodic systems
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BML: Fortran interface is important for targeted 
application codes
• Hand-coded wrapper functions
• Not “automatic,” but low overhead in code writing
• Interface relatively stable



21 Exascale Computing Project

BML: Unit test/Continuous integration

• Over 1,000 unit tests
– including four different data types and five matrix formats
– Ctest for developers

• Continuous Integration
– Pull Requests tested on CPUs with github
– on GPU using Ascent @ Oak Ridge Leadership Computing Facility (OLCF)

• Currently testing dense format using MAGMA

• Tracking “issues” on github



Offloading to GPU
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Offloading strategy

• Dense format on Nvidia and AMD
– Rely on MAGMA
– Use some vendor libraries when better performing (example: dense 

diagonalization in cuSolver)

• Dense format on Intel and Sparse formats on Nvidia, and AMD
– OpenMP for memory allocation, CPU-GPU data transfer and various other 

operations
– Use vendor libraries for performance critical kernels
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GPU offloading with OpenMP

• Matrices are “C struct”
• Mapping to GPU matrix data only, not the whole struct

– Pointer to datatype

– Full control of data movement between CPU and GPU

REAL_T *A_matrix = (REAL_T*)A->matrix;
#pragma omp target enter data map(alloc:A_matrix[0,sizea])
#pragma omp target update to (A_matrix[0:sizea])
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Challenges in interfacing with optimized vendor libraries

• Data mapping between BML ELLPACK and vendor sparse formats 
(CSR) on device

• Some functions in libraries require data to be “ordered” in each row
• cuSparse

– Workspace required is so large, makes it not practical (CUDA11)
– implementation of: C’ = 𝛼𝛼A*B + 𝛽𝛽C expects sparsity pattern of C and A*B to be 

consistent with each other

CSR2Ellpack

Ellpack2CSR

Vendor CSR
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Using a synthetic Hamiltonian matrix for Performance 
Benchmarking

• Typical benchmarking requires storing large matrices
• There are no good standard benchmark suite for performance in 

electronic structure
• We use a synthetic Hamiltonian based on a simple two-orbitals/atom 

Tight-Binding model
– Parameters for coupling, onsite energies, distance exponential decay, 

random noise factor
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rocSPARSE performance on Crusher @ OLCF
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Chebyshev expansions for modest 
matrix sizes (metals)

www.ExascaleProject.org
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Chebyshev expansion of Density Matrix

• An alternative to inefficient dense diagonalization on GPU is to use a 
Chebyshev polynomial expansion

• Problem
– Expansion can involve over 100 terms and be computationally very costly too

Exascaleproject.org

�
𝑛𝑛

𝑐𝑐𝑛𝑛𝑇𝑇𝑛𝑛 𝐻𝐻 ≈ 𝑓𝑓(𝐻𝐻)

𝐷𝐷 = (𝐼𝐼 + 𝑒𝑒𝛽𝛽 𝐻𝐻−𝜇𝜇𝜇𝜇 )−1 = 𝑓𝑓(𝐻𝐻)
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Patterson and Stockmeyer trick 
[SIAM J. Sci. Comput. 1973]
• For 𝑘𝑘𝑚𝑚 number of terms, 𝑘𝑘−1+𝑚𝑚−2 

multiplications for 𝑥𝑥 needed
• So, for 𝐾𝐾 terms in an expansion, 

only need ~2√𝐾𝐾 multiplications of 
𝐻𝐻

• Substantial savings when x is a 
matrix and cost dominated by 
matrix multiplications!

• Adapted for Chebyshev and DM 
calculation 

Exascaleproject.org

[Liang, Baer, Saravanan, Shao, Bell, Head-Gordon, J. Comput. Phys. (2004)]
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Chebyshev expansion compared to direct diagonalization

• Time-to-solution on Nvidia V100
– Baseline is cuSolver
– Speedup more important for smaller 

matrices

Diagonalization faster than Chebyshev

Chebyshev much faster than Diagonalization
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1
2
3
4

stream

Exploiting GPU concurrency in calculating Chebyshev 
terms
• For “small” matrices, a single 

matrix-matrix multiplication does 
not fully utilize a GPU

• Several Chebyshev terms can 
be computed concurrently and 
use GPU streams for an 
additional speedup

𝐻𝐻 𝐻𝐻2
𝐻𝐻4
𝐻𝐻3

𝐻𝐻7
𝐻𝐻6
𝐻𝐻5

𝐻𝐻8

⋯



Distributing computation

1. D&C based on matrix elements
2. Distributed Linear Algebra
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Graph-based distributed solver implemented in PROGRESS

• Computations are distributed following a divide 
and conquer (D&C) approach

• Automatic and adaptive partitioning of matrix 
using graph-based thresholding

• Sub-systems solved concurrently using single-
node solvers developed in project

• O(N) for given threshold/subsystem size

[Niklasson, Anders M. N., Susan M. Mniszewski, Christian F. A. Negre, Marc J. Cawkwell, Pieter J. Swart, Jamal Mohd-Yusof, Timothy C. 
Germann, et al. 2016. “Graph-Based Linear Scaling Electronic Structure Theory.” The Journal of Chemical Physics 144 (23): 234101.]
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Balancing computational cost and accuracy with matrix 
thresholding 
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Distributed BML format: “distributed2d”

• 2D matrix decomposition using MPI
– P x P tasks layout
– Square submatrices

• Each submatrix is a “shared memory” BML matrix
– Leverage developments for shared memory formats

A

struct bml_matrix_distributed2d_t
{

bml_matrix_t *matrix; 
MPI_Comm comm;
int ntasks;
int nprows;
int npcols;
int myprow;
int mypcol;
int mpitask;
…

}

Local sub-matrix in dense, 
ellpack, csr, ellblock format
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A non-intrusive implementation
• “Wrapper” calling sub-matrix operations when possible

– “distributed2d” operations combinations of “shared memory” matrix operations
– Shared memory code untouched

• Some operations simply need reduction at the end
– Frobenius norm,…

• Some operations require substantial communications
– multiplication, transpose,…

• Some operation are more intrusive
– Bounds on eigenvalues using Gershgorin circles

• Some operations are beyond scope
– Eigensolver: interface with existing solver (ScaLapack and ELPA)
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Distributed BML format: matrix-matrix multiplication

• Implemented Cannon’s algorithm for matrix-matrix multiplication
– P-length loop over matrix blocks
– 2 point-to-point communications at each step

• “shift” blocks to enable computation of local block in product

C01 = A00 x B01 + A10 x B11

A B



What about wavefunction-based 
solver? (Planewaves…)
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Numerical Discretization of DFT problem

• Plane-Waves or Finite Differences
– Large number of degrees of freedom (DOF) / 

electronic wave function

• Solution
– M x N “tall-and-skinny” matrix of coefficients
– Number of DOF/ wave function M ∼1,000 x number of 

wave functions N

• Hamiltonian very sparse, but very large!
M

N
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Eigenvalue problem in wavefunction-based solver (Plane 
Waves,…)
• Project eigenvalue problem into smaller dimension to compute 

Density Matrix
– Solve eigenvalue problem

• Build new trial eigenvectors of H

• Update wave functions using preconditioned gradient

→ 𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆ΛΨ𝑇𝑇𝐻𝐻𝐻𝐻𝐻 = Ψ𝑇𝑇 Ψ𝑉𝑉Λ

Ψ → Ψ𝑉𝑉

Generalized dense eigenvalue problem

Small problem 
compared to basis 

set size!

Ψ → Ψ− �𝐾𝐾𝐾𝐾

Wavefunctions 
define smaller 

dimension space
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Proxy-app: Loewdin orthogonalization

• Distributed computation of 
Gram matrix S = Ψ𝑇𝑇Ψ

• Accumulate S on each GPU 
(communication)

• compute 𝑆𝑆−1/2 on each GPU 
(replicated computation)

• Apply 𝑆𝑆−1/2 to Ψ

−1/2

=

= +…++

Diagonalization would 
involve the same 

operations!
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Parallel scaling/performance on Summit

• Matrix 3,000,000 x 3,000
• Dense iterative solver converges 

in 7 iterations
• Time-to-solution better than 1 s 
• Collective communications using 

NCCL library

[Lupo Pasini, Turcksin, Ge, Fattebert, Parallel Computing (2020)]

Dense 
diagonalization is 

bottleneck in strong 
scaling limit!
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Lesson learned: Efficiently using GPUs requires a lot of 
work!
• OpenMP alone not always sufficient to get “good” performance
• Relying on vendor libraries can help

– requires understanding well interfaces, requirements,… for each library

• Building a software stack supporting multiple GPUs and third-party 
libraries is a challenging task
– there are still a number of Computer Science challenges on exascale

architectures…

• More GPU-friendly algorithms can provide substantial speedup on 
GPU accelerators and enable faster time-to-solution in electronic 
structure calculations
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