Our Road to Exascale:

Particle Accelerator & Laser-Plasma Modeling

Axel Huebl

Lawrence Berkeley National Laboratory

On behalf of the WarpX team (lead: J-L Vay @ LBNL) LBNL, LLNL, SLAC

> + contributors external to ECP from labs, universities & industry in USA, Europe & Asia

Webinar Series on Best Practices for HPC Software Developers

virtual March 15th, 2023

Outline

- Intro particle accelerator modeling
- Then (<2016) Warp
- The journey from Warp to WarpX (2016-2023)
- Now (2023+) WarpX + ecosystem
- Conclusion

Particle Accelerators are Essential Tools in Modern Life

Medicine

- ~9,000 medical accelerators in operation worldwide
- 10's of millions of patients treated/yr
- 50 medical isotopes, routinely produced with accelerators

Industry

- ~20,000 industrial accelerators in use
 - Semiconductor manufacturing
 - cross-linking/ polymerization
 - Sterilization/ irradiation
 - Welding/cutting
- Annual value of all products that use accel. Tech.: \$500B

National Security

- Cargo scanning
- Active interrogation
- **Stockpile stewardship**: materials characterization, radiography, support of nonproliferation

Discovery Science

- ~30% of Nobel Prizes in Physics since 1939 enabled by accelerators
- 4 of last 14 Nobel Prizes in Chemistry for research utilizing accelerator facilities

Opportunity for much bigger impact by reducing size and cost.

$\textbf{Modeling: Exploration} \rightarrow \textbf{Understanding} \rightarrow \textbf{Design}$

The Modeling of Particle Accelerators is Very Complex

electromagnetic (EM) fields on a grid

Involves the modeling of the intricate interactions of

- relativistic particles: beams, plasmas, halo, stray electrons
- EM fields: accelerating/focusing fields, beam self-fields, laser/plasma fields
- structures: metals, dielectrics.

Typical computer representations:

- particles: macroparticles representing each 1-10⁶ particles
- fields: electromagnetic, on a grid
- **structures:** surfaces interacting with grid and macroparticles

Many space and time scales to cover:

- from μm (e.g., plasma structures, e-surface interactions) to km (e.g., LHC)
- from ns (beam passing one element) to seconds or more (beam lifetime)

⇒ needs best algorithms on largest & fastest computers

AMP has pioneered algorithms to cut on

- # of meshes: adaptive mesh refinement for beams & plasmas¹
- # of time steps: Lorentz boosted frame method²

¹ J.-L. Vay et al, Phys. Plasmas **11**, 2928 (2004)

² J.-L. Vay, *Phys. Rev. Lett.* **98**, 130405 (2007)

Ultimate goal: *virtual accelerator* with *on-the-fly tunability* of physics & numerics complexity to users

Mean toward goal Open software ecosystem with tunable physics & numerics

Start-to-End Modeling R&D

- advanced models: numerics, AI/ML surrogates
- speed & scalability: team science with computer sci.
- flexibility & reliability: modern software ecosystem

Then: Warp prior to 2016

Warp had become a PIC framework with many applications

What made Warp unique: algorithmic innovation

Sample algorithm innovations pioneered in Warp (some adopted in other codes)

Warp: limitations as of 2016

• Half code in Fortran + half in Python

- Python: difficulty scaling on large supercomputers (>1 hour start time at scale)
- Complicating transition to new hardware: manycore, GPUs, etc.

• Small core team (2+ physicists w/ science projects) made it difficult to

- Transition to new hardware
- Keep up performance optimization with fast pace of algorithmic innovation
- Support growing users (& developers) base
- Maintain documentation, test suite

SciDAC funding

 Supported a project that included 6+ (independent) Particle-In-Cell codes/frameworks with diverse science targets: dilution

⇒ ECP provided opportunity for focused effort with sufficient critical mass, & more...

The Journey: from Warp to WarpX (2016-2023)

Power-Limits Seed a Cambrian Explosion of Compute Architectures

50 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

Power-Limits Seed a Cambrian Explosion of Compute Architectures

Portable Performance through Exascale Programming Model

A. Myers et al., "Porting WarpX to GPU-accelerated platforms," Parallel Computing 108, 102833 (2021)₁₅

Available Particle-in-Cell Loops

• electrostatic & electromagnetic (fully kinetic)

Advanced algorithms

boosted frame, spectral solvers, Galilean frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules

field ionization of atomic levels, Coulomb collisions, QED processes (e.g. pair creation), macroscopic materials

Geometries

 1D3V, 2D3V, 3D3V and RZ (quasicylindrical)

Cylindrical grid (schematic)

Multi-Node parallelization

- MPI: 3D domain decomposition
- dynamic load balancing

On-Node Parallelization

- GPU: CUDA, HIP and SYCL
- CPU: OpenMP

Scalable, Standardized I/O

- PICMI Python interface
- openPMD (HDF5 or ADIOS)
- in situ diagnostics

Developed by a multidisciplinary, multi-institution team

Marco

Kevin

Gott

(ECP coPI)

David Grote

(ECP coPI)

Marc Hogan

(ECP coPI)

+

Lixin

Ge

Junmin Gu

Axel

Rémi

Lehe

Jambunathan

Rvan

Sandberg Shapoval

Olga

Prabhat Kumar

Yinjiah

Andrew Myers

MODERN ELECTRO

Weigun

Zhang

Edoardo

Zoni

d

Giacomel (Switzerland)

Warp to WarpX: the journey

Sustainable documentation/knowledge, code and maintenance (e.g., testing)

Online Documentation: warpx|hipace|impactx.readthedocs.io

JSAGE				
Run WarpX	For a complete list of all example input files, have a look at our			
lanut Daramatara	Examples/ directory. It contains folders and subfolders with self-			
input Parameters	describing names that you can try. All these input files are automatically			
Python (PICMI)	tested, so they should always be up-to-date.			
Examples				
Beam-driven electron acceleration	Beam-driven electron acceleration			
Laser-driven electron acceleration	AMReX inputs :			
Plasma mirror				
Laser-ion acceleration	• 🛓 2D case			
Uniform plasma	• 📥 2D case in boosted frame			
Capacitive discharge	• 📥 3D case in boosted frame			

PSIP processes: onboarding, etc.

Productivity and Sustainability Improvement Planning

RateYourProject.org

Open-Source Development & Benchmarks: github.com/ECP-WarpX

IDEAS

productivity

0	All checks have passed 24 successful and 1 neutral checks		
~	🗑 🍏 macOS / AppleClang (pull_request) Successful in 40m	Required	Details
~	💽 🖽 Windows / MSVC C++17 w/o MPI (pull_request) Successful in 58m		Details
~	O CUDA / NVCC 11.0.2 SP (pull_request) Successful in 31m	Required	Details
~	A HIP / HIP 3D SP (pull_request) Successful in 29m		Details
~	Intel / oneAPI DPC++ SP (pull_request) Successful in 38m		Details
1	OpenMP / Clang pywarpx (pull request) Successful in 37m	Required	Details

188 physics benchmarks run on every code change of WarpX13 physics benchmarks + 32 tests for ImpactX

Automated Performance on Targets

- OLCF Ascent: IBM w/ V100
- NERSC GitLab: Cray w/ A100

Continuous Deployment

Rapid and easy installation on any platform:

conda install -c conda-forge warpx

python3 -m pip install .

WarpX

license BSD-3-Clause-LBNL

cmake -S . -B build cmake --build build --target install

platforms linux | osx | win commits since 23.01 10 supported by

DOI (source) 10.5281/zenodo.4571577

brew tap ecp-warpx/warpx brew install warpx

spack install warpx

language Python

spack install py-warpx

language C++17

DOI (paper) 10.1016/j.parco.2021.102833

🔗 Azure Pipelines 🛚 succeeded 🚽 nightly packages 🛛 succeeded 🛛 docs passing spack v23.01 conda-forge v23.01 chat on gitter

module load warpx module load py-warpx

Summary

Jobs

- Obuntu pip from dev
- Obuntu conda
- > Ubuntu conda w/ OpenMPI
- 🥝 Ubuntu mamba
- Obuntu mamba w/ OpenMPI
- Obuntu spack
- Obuntu spack CUDA
- 📀 Ubuntu spack w/o MPI
- macOS pip from dev w/ OpenMPI
- macOS pip from dev w/o OMP
- macOS conda
- macOS conda w/ OpenMPI
- 🥏 macOS mamba
- 🥏 macOS mamba w/ OpenMPI
- macOS spack
- macOS spack from dev w/o MPI
- Ø Windows pip from dev
- Windows conda
- Windows mamba

Now (2023+): WarpX + Ecosystem

22

WarpX in ECP: Staging of Laser-Driven Plasma Acceleration

Goal: deliver & scientifically use the nation's first exascale systems

- **ExaFLOP:** a quintillion (10¹⁸) calculations per second
- ensure *all* the necessary pieces are *concurrently* in place

Our DOE science case is in **HEP**, our methods are **ASCR**:

first 3D simulation of a chain of plasma accelerator stages for future colliders

First-of-their-kind platforms: NERSC (Intel, then Nvidia)→Exascale: OLCF (AMD), ALCF (Intel)

Vay, A. Huebl et al., ISAV'20 Workshop Keynote (2020) and PoP 28.2, 023105 (2021); L. Fedeli, A. Huebl et al., SC22 (2022)

April-July 2022: WarpX on world's largest HPCs L. Fedeli, A. Huebl et al., *Gordon Bell Prize Winner* at SC'22, 2022

modeling of novel plasma e- beam injection scheme

Fig. 1: Sketches showing the focusing of a high-power femtosecond laser (a) into a gas jet (b) onto a hybrid solid-gas target.

A success story of a multidisciplinary, multi-institutional team!

Š

LO

Atos

arm

GENC

<u>2</u>2

mm

BERKELEY LAF

A success story of a multidisciplinary, multi-institutional team!

Is an ExaFlop/s (2022) 1,000x "faster" than a PetaFlop/s (2008)?

For the **exact same simulation size**, time-to-solution is *at best down by 20-100x!*

Note: Perlmutter & Frontier are pre-acceptance measurements!

For the exact same simulation size, time-to-solution is at best down by 20-100x!

HEP Science Drivers Require Exascale

Exascale PIC Modeling Benefits Plasma Science Beyond HEP

Light Sources for Basic Energy Science & National Security

LPA beams for light sources

all-optical undulators

Industry

EUV semiconductor lithography

commercial fusion energy research

Fusion-Energy Sciences

BELLA iP2 target chamber

Life Sciences & Medicine

FLASH radio-biology

Astrophysics

origin of strong astrophysical fields & largest energy electrons

em. radiation, turbulence & electron beams from solar flares

magnetic reconnection

1/0

Data & Compute

Develop, CI/CD

Physics

Conclusions

The ECP multi-year strategy enabled

- integration: dependencies on vendors and ST require iteration
 - continuous improvements through *multiple release cycles*
 - coherent, feature-complete, algorithmically innovative software products
- redesigns: adjustments to technical execution were possible
 - compilers lacked support: decided for a Fortran to C++ migration mid project
 - Python infrastructure overhaul to GPU-capable methods
 - performance optimizations led to redesign of particle data structures
- risk mitigation: e.g., replace self-made with better I/O methods from ECP ST
 - Contingency Funding Requests: efficient process & funds

- trusted us: their FOSS contributions will be maintained
- enabled us: leveraging of investment in WarpX spin-off/follow-up projects that *contribute back*

Write strategies: plotfiles \rightarrow ADIOS BP per rank & step \rightarrow ADIOS BP w/ append to subfiles

Dependencies become "Team of Teams"

- vendors, ST, centers, ...
- own sub-libs/modules, contributions
- machines & deployed environments

Incentives to integrate at all levels

- part of KPP's
- aimed at *production level*, not just prototypes

IDEAS

Prioritization of vendor bugs & features

- AMD: CMake scripts, Compiler
- Intel: DPC++ compiler
- Nvidia: compiler bugs, warn host mem access

7yrs ECP vs. shorter multi-yr projects:

- Scalable collaboration: easy to add partners
- Multiple iterations over release cycles with partners
- Deep SW stack that is continuously developed together

We are Establishing an Open Community Ecosystem with Standards

Complexities in accelerator modeling require to work together

Internationally

We established a leadership role in our community

- push to organize: enhance cooperation, avoid duplication
- sustainable development: code ecosystem

SciDAC

Conclusion

• ECP enabled

- Complete rewrite of efficient code for CPUs+GPUs for focused area of research
- Ability to combine innovation in algorithms with very efficient implementation
- Collaboration WarpX+AMReX is the best that many of us have experienced

⇒ great outcome: 500x FOM for Laser-Particle Acceleration; Gordon Bell Prize '22

- Sustainable development over nearly a decade
 - across teams, labs and technologies: one "felt" as a part a community
 - integrated teams of comput. phys. + applied math. + comput. sc. + software eng.

Management Structure

- Focused main deliverables, flexibility to correct course, *freedom to innovate*
- Felt a good balance between oversight and overhead

Funding Support

This research was supported by the **Exascale Computing Project** (17-SC-20-SC), a collaborative effort of two **U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration)** responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed platforms, in support of the nation's exascale computing imperative. This work was also performed in part by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52–07NA27344 and **SLAC National Accelerator Laboratory** under Contract No. AC02–76SF00515. This research used resources of the **Oak Ridge Leadership Computing Facility**, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725, the **National Energy Research Scientific Computing Center (NERSC)**, a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231, and the supercomputer Fugaku provided by **RIKEN**.

Backup Slides