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Particle Accelerators are Essential Tools in Modern Life

+ ~9,000 medical « ~20,000 industrial « Cargo scanning « ~30% of Nobel Prizes in
accelerators in accelerators in use Physics since 1939
operation worldwide « Semiconductor « Active interrogation enabled by accelerators

manufacturing

+ 10’s of millions of « cross-linking/ + Stockpile stewardship: « 4 of last 14 Nobel Prizes in
patients treated/yr polymerization materials character- Chemistry for research

 Sterilization/ ization, radiography, utilizing accelerator

+ 50 medical isotopes, irradiation support of non- facilities
routinely produced with « Welding/cutting proliferation
accelerators O t .t f h b .

* Annual value of all ppor uni y or muc ’gger
products thatuse accel. § H -
A impact by reducing size and cost.

Modeling: Exploration — Understanding — Design




The Modeling of Particle Accelerators is Very Complex

Macroparticles gycfaces INVOlves the modeling of the intricate interactions of

e relativistic particles: beams, plasmas, halo, stray electrons

e EM fields: accelerating/focusing fields, beam self-fields, laser/plasma fields
e structures: metals, dielectrics.

Typical computer representations:

e particles: macroparticles representing each 1-10° particles
e fields: electromagnetic, on a grid

e structures: surfaces interacting with grid and macroparticles

Many space and time scales to cover:
electromagnetic (EM) e from um (e.g., plasma structures, e-surface interactions) to km (e.g., LHC)
fields on a grid e from ns (beam passing one element) to seconds or more (beam lifetime)

= needs best algorithms on largest & fastest computers
D AMP has pioneered algorithms to cut on
b « # of meshes: adaptive mesh refinement for beams & plasmas’
: « # of time steps: Lorentz boosted frame method?
\ 1
J.-L. Vay et al, Phys. Plasmas 11, 2928 (2004)
2 J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)




All Accelerators in the World Rely on Modeling
and Increasingly on High-Performance Computing (HPC)

CERN (HL-)LHC “

HEP Accelerator and Beam Physics Grand Challenges*

#1 beam intensity: Increase beam intensities by orders of magnitude.

= increase # of particles by orders of magnitude.

#2 beam quality: Increase beam phase-space density by orders of

mag

Next generation of accelerators needs
s3 next generation of HPC modeling tools!

= SlMuliate all une pdarticies.

#4 beam prediction: Develop predictive “virtual particle accelerators”?

= simulate everything: all the particles, conductors,
dark currents, many turns, ...

*S. Nagaitsev et al., “Accelerator and Beam Physics: Grand Challenges and
Research Opportunities,” Snowmass 2021 LOI
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Ultimate goal: virtual accelerator with on-the-fly tunability of physics &

numerics complexity to users

Fast Reduced Full
physics physics
Great for
ensemble 1D-1V 3D-3V
runs for

design
studies

Low High
resolution resolution

Surrogate First
models principles

Accurate

Great for
detailed
runs for
physics
studies

Mean toward goal \ Start-to-End Modeling R&D

Open software e advanced models: numerics, Al/ML surrogates
ecosystem with tunable BLAS e speed & scalability: team science with computer sci.
phySICS & numerlcs BEAM PLASMA & ACCELERAT! N TOOLKIT

e flexibility & reliability: modern software ecosystem




Then:
Warp prior to 2016



Warp: historical roadmap & funding
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Warp had become a PIC framework with many applications

Injectors/linacs

Beam dynamics in rings

Multi-charge state beams

Injection
==
____-—l_"' Transport ‘ ’ |
,.‘__:M .T/—L’:H‘ Neutral|zat|on ! : |
m== | =
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UMER LEBT — Project X
Traps Electron cloud effects Multi-pacting
SEY physics
/ from Posinst
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Courtesy H. Sugimoto

Warp
Alpha anti-H trap

Paul trap

Warp-Posinst
SPS

“Ping-Pong” effect

Plasma acceleration
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Laser/beam plasma interactions

Plasma mirrors, ion acceleration, ...

Free Electron Lasers
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What made Warp unique: algorithmic innovation

Use of special relativity Scalable spectral Maxwell

Particle-In-Cell with
Adaptive Mesh Refinement

Control of numerical

to slash # time steps by | Novel particle pushers solvers w/ domain
orders of magnitude

Cherenkov instability decomposition

B. Godfrey, et al, J. Comp. J.-L. Vay, et al, J. Comp. Phys.

E— R. Cohen, et al, Phys. Plasmas | ppys. 248, 33 (2013) 243 260 (201
J.-L. Vay, et al, Comput. Phys. Ses P.m..mm:,.:,w 12, 056708 (2005) 3 26012019
Comm. 164, 171 & 297 (2004) R. Lehe, et al, Phys. Rev. E H. Kallala, et al, Comp. Phys.
J.-L. Vay, Phys. Rev. Lett. 98, | J.-L.Vay, Phys. Plasmas 15, 94, 053305 (2016) Comm. 244, 25 (2019)
130405 (2007) 056701 (2008) ’

Sample algorithm innovations pioneered in Warp (some adopted in other codes)
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Warp: limitations as of 2016

e Half code in Fortran + half in Python
o Python: difficulty scaling on large supercomputers (>1 hour start time at scale)
o Complicating transition to new hardware: manycore, GPUs, etc.

e Small core team (2+ physicists w/ science projects) made it difficult to
o Transition to new hardware
o Keep up performance optimization with fast pace of algorithmic innovation
o Support growing users (& developers) base
o Maintain documentation, test suite
e SciDAC funding
o Supported a project that included 6+ (independent) Particle-In-Cell codes/frameworks with
diverse science targets: dilution

= ECP provided opportunity for focused effort with sufficient critical mass, & more...




The Journey:
from Warp to WarpX (2016-2023)



Power-Limits Seed a Cambrian Explosion of Compute Architectures

ECP

EXASCALE
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PROJECT
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New plot and data collected for 2010-2021 by K. Rupp




Power-Limits Seed a Cambrian Explosion of Compute Architectures
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distribute one over  10,000s of f millions of
simulation computers °"  cores
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Portable Performance through Exascale Programming Model

AMReX library EK(E\F’ = 1] @ summitusing GrUs ~«| = Write the code once, specialize at
\ s = SRR S ,./' compile-time
g IBM Power9 + &
. o S 10°4 V100 (OLCF) . g
» Domain decomposition & MPI 5 e &' ParallelFor (/Scan/Reduce)
communications: MR & load balance g 1. . &

9 e 0 amrex: :ParallelFor( n_particles,
£ ™ .,/6’ [=] AMREX_GPU_DEVICE (long i) {
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5 .
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« Performance-Portability Layer:
GPU/CPU/KNL

= Parallel linear solvers
(e.g. multi-grid Poisson solvers)
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WarpX is a GPU-Accelerated PIC Code for Exascale BLAST ./

Available Particle-in-Cell Loops

e clectrostatic & electromagnetic (fully kinetic)

x,v = f(E,B)

Push particles

4

\ ] =fGv)

Gather fields Deposit
EB = f(E,B)\ currents
EB=rp| Solve fields

Advanced algorithms

boosted frame, spectral solvers, Gé]}iéé’r}*’ -
frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules

field ionization of atomic levels, Coulomb
collisions, QED processes (e.g. pair creation),

macroscopic materials

-
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Geometries

1D3V, 2D3V,
3D3V and

RZ (quasi- @@@

Cyl | n d r| Ca |) 3D Cartesian grid Cylindrical grid (schematic)

Multi-Node parallelization
* MPI: 3D domain decomposition
* dynamic load balancing

On-Node Parallelization

« GPU: CUDA, HIP and SYCL e

« CPU: OpenMP OS
Scalable, Standardized I/O

+ PICMI Python interface | [
« openPMD (HDF5 or ADIOS) RNy

* in situ diagnostics




PROJECT
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Warp to WarpX: the journey
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Software Productivity & Sustainability IDEAS

productivity

Sustainable documentation/knowledge, code and maintenance (e.g., testing)

Online Documentation: Open-Source Development & Benchmarks:
warpx|hipace|impactx.readthedocs.io github.com/ECP-WarpX

° All checks have passed

For a complete list of all example input files, have a look at our

Run WarpX 24 successful and 1 neutral checks
directory. It contains folders and subfolders with self-
Input Parameters deccribi h All these i fil ‘call
X CEE LA T R e S T A S S SRR v ¥ macOS / AppleClang (pull_request) Successful in 40m ( Reguired ) Details
Python (PICMI) tested, so they should always be up-to-date.
8 Examples v H Windows / MSVC C++17 w/o MPI (pull_request) Successful in 58m Details
Beam-driven electron acceleration Beam-driven electron acceleration
.0. essful ( i)  Detail
Uater ddriven cleciran scceleration v () CUDA / NVCC 11.0.2 SP (pull_request) Successful in 31m ((Required etails
) AMReX inputs :
Plasma mirror 7 ) HIP / HIP 3D SP (pull_request) Successful in 29m Details
Laser-ion acceleration & 2D case
Uniform plasma + AT Esein boostad fame v () Intel / oneAPI DPC++ SP (pull_request) Successful in 38m Details
& 3D case in boosted frame

Capacitive discharge Details

L ~ @) () OpenMP / Clana pvwarpx (bull reauest) Successful in 37m Reauired
. . 188 physics benchmarks run on every code change of WarpX
PSI P processes - on board I ng’ etC. 13 physics benchmarks + 32 tests for ImpactX

kI?ate\(oyrF’_roject-org e OLCF Ascent: IBM w/ V100
SSW.i0/psip e NERSC GitLab: Cray w/ A100

Productivity and Sustainability "X ) P TS TToSToSooToSmooooToomooooooooh
Improvement Planning /\ . Automated Performance on Targets

’;\ \ EXASCALE Better Reliability ./‘/ Better Per riorman 1ce i
E\g\[;\)F’ ==t y TTTTTTTTTTTTTTTToTTTmoTTmToTmooTmoommooomooomooomoooooooes ‘



https://bssw.io/psip

Continuous Deployment

Rapid and easy installation on any platform:

PIACTS

spack install warpx
spack install py-warpx

conda install
-c conda-forge warpx

brew tap ecp-warpx/warpx

python3 -mpip install. brew install warpx

cmake -S. -B build
cmake --build build
--target install

module load warpx
module load py-warpx

WarpX

o Azure Pipelines succeie'ded' # nightly packages Vsiucceé'trl'éd" docs passing‘ spack v23.01 conda-forge v23.01 chat ong‘itfer“

language m

DOI (paper) 10.1016/.parco.2021.102833

platforms linux | osx | win commits since 23.01 10 supported by m language [€++L B

license BSD-3-Clause-LBNL DOI (source) 10.5281/zenodo.4571577

-
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Summary

Jobs

Name

0O 000000 000000 0000 OOCBDO

Ubuntu pip from dev w/ OpenMPI
Ubuntu pip from dev

Ubuntu conda

Ubuntu conda w/ OpenMPI
Ubuntu mamba

Ubuntu mamba w/ OpenMPI
Ubuntu spack

Ubuntu spack CUDA

Ubuntu spack w/o MPI

macOS pip from dev w/ OpenMPI
macOS pip from dev w/o OMP
macO0S conda

macOS conda w/ OpenMPI
mac0S mamba

mac0S mamba w/ OpenMPI
macOS spack

macOS spack from dev w/o MPI
Windows pip from dev

Windows conda

Windows mamba

IDEAS

productivity




Now (2023+):
WarpX + Ecosystem



WarpX in ECP: Staging of Laser-Driven Plasma Acceleration

U.S. DEPARTMENT OF Ofﬂce Of

Goal: deliver & scientifically use the nation’s first exascale systems WENERGY Science

e ExaFLOP: a quintillion (10"®) calculations per second
* ensure all the necessary pieces are concurrently in place

Our DOE science case is in HEP, our methods are ASCR:

first 3D simulation of a chain of plasma

accelerator stages for future colliders
=l I I I I I I I I

2 3 4 5 6 7 8 9 10
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https://docs.google.com/file/d/1Wa1g9u15yZnIPN9lyDZxXNV_6wfdNyL0/preview
https://graphemica.com/%E2%9C%94
https://graphemica.com/%E2%9C%94
https://graphemica.com/%E2%9C%94

2022 ACM Gordon Bell Prize: using the First Exascale Supercomputer
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April-July 2022: WarpX on world’s largest HPCs
L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner at SC’22, 2022

modeling of novel

plasma e- beam injection
SCheme (a) into a gas jet (b) onto a hybrid solid-gas target.

Fig. 1: Sketches showing the focusing of a high-power femtosecond laser
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2022 ACM Gordon Bell Prize: using the First Exascale Supercomputer

April-July 2022: WarpX on world’s largest HPCs .
L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner at SC’22, 2022
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2022 ACM Gordon Bell Prize: using the First Exascale Supercomputer

April-July 2022: WarpX on world’s largest HPCs
L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner at SC’22, 2022
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https://docs.google.com/file/d/11jMiSKneUllpIkhlopcTzzD7G79q06me/preview

2022 ACM Gordon Bell Prize: using the First Exascale Supercomputer

April-July 2022: WarpX on world’s largest HPCs

L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner at SC’22, 2022
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Is an ExaFlop/s (2022) 1,000x “faster” than a PetaFlop/s (2008)?

For the exact same simulation size, time-to-solution is at best down by 20-100x!

Distribute one - Py v s i v 100
Simulation over :g;gggfe?'; ’ \‘T ‘3}}\\ " i
\\v—”‘\ \\i 7502
-.- - Frontie\r \\‘\ S
[ ‘.{. —_— x x --- Fugaku D 4 “_50 E
.-. x x --=-  Summit o5 £
-~ Perlmutter §

Data 1 - 10 - 10(())

Communication

strong scaling

used available nodes [%]

Note: Perlmutter & Frontier are pre-acceptance measurements!




Is an ExaFlop/s (2022) 1,000x “faster” than a PetaFlop/s (2008)?

For the exact same simulation size, time-to-solution is at best down by 20-100x!

Dis_tribute_ one ver 10,000s of
Simulation computers

X
oo

Data
Communication

Pl
LEN —
hY

We now have more parallelism!
Let's model more physics:

higher grid resolution

more particles

resolve ion motion & collisions
resolve emittance growth from
collisions

2D — 3D

add high-field effects

long-term stable, advanced solvers




HEP Science Drivers Require Exascale

AAC Linear collider design: PBA & LWFA

PBA XFELs design
Extreme field science

High-Field Physics
Advanced ion sources

PHYSICAL
REVIEW
LLETTERS

A
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+ LLE, Beijing Normal, Tsinghua  [Feesepappe

l;\\l %
‘ %OAK RIDGE
National Laboratory

Energy-scalable plasma accelerators
Traveling-wave electron acceleration (TWEAC)
simultaneously circumvents the LWFA limitations
of diffraction, dephasing and depletion.

= non-rotationally symmetric 3D geometry
= long acceleration lengths
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Exascale PIC Modeling Benefits Plasma Science Beyond HEP

Astrophysics

Light Sources for Fusion-Energy Sciences Life Sciences & Medicine
Basic Energy Science ] FLASH radio-biology
& National Security BELLA iP2 target chamber

LPA beams for light

sources origin of strong

astrophysical fields &

all-optical undulators largest energy electrons

Industry
EUV semiconductor \ : AR
lithography Short f focal Iength 2.5 OAP

. . * ok
commercial fusion energy Pl o

, N -
research A * — * em. radiation, turbulence
frrereeer
I q' & electron beams from

solar flares

BERKELEY LAB

Serne®

magnetic reconnection




Our ECP Software Stack

BLAST ./

Python Modules PICMI lnterface Workflows My
ImpactX Object-Level Python
accelerator Bindings

WarpX | HiPACE++ | ARTEMIS
full PIC, LPA/LPI quasi-static, PWFA microelectronics lattice design extensible, Al/ML
6 PICSAR . . :
‘ pyAMReX D e ABLASTR library: common PIC physics

Diagnostics
0S ANReX code I(i(())upling FET Lin.
Alg.
.. Containers, Communication, On'IQ_F
- g ent multi BLAS++
. Portablllty, Utilities E device LAPACK++
Desktop m
HtISC MPI CUDA, OpenMP, SYCL, HIP

EECP = /O  Data & Compute  Physics




Conclusions



The ECP multi-year strategy enabled

e integration: dependencies on vendors and ST require iteration
o continuous improvements through multiple release cycles
o coherent, feature-complete, algorithmically innovative software products

e redesigns: adjustments to technical execution were possible
o compilers lacked support: decided for a Fortran to C++ migration mid project
o Python infrastructure overhaul to GPU-capable methods
o performance optimizations led to redesign of particle data structures

¢ risk mitigation: e.g., replace self-made with better /O methods from ECP ST
o Contingency Funding Requests: efficient process & funds

e trust & collaboration: attracted national & internat. contributors =
o trusted us: their FOSS contributions will be maintained = =l Bl HsN OB SRR CR
o enabled us: leveraging of investment in WarpX I L L

spin-off/follow-up projects that contribute back Write strategies: plotfiles — ADIOS BP per rank &
step — ADIOS BP w/ append to subfiles




Trust & Collaboration: Ecosystem Release Cycles IDEAS
productivity

Dependencies become “Team of Teams” |ncentives to integrate at all levels

e vendors, ST, centers, ... e part of KPP’s
® own sub-libs/modules, contributions e aimed at production level, not just prototypes

e machines & deployed environments
PIoY Prioritization of vendor bugs & features

e AMD: CMake scripts, Compiler
e Intel: DPC++ compiler

= Now
e Nvidia: compiler bugs, warn host mem access
7yrs ECP vs. shorter multi-yr
i " Impact
m warpfeece-{ "5 | 1 [

Then

e Scalable collaboration: easy to
add partners
AMReX m m e Multiple iterations over release

cycles with partners
Vendor e Deep SW stack that is

continuously developed together




We are Establishing an Open Community Ecosystem with Standards

Complexities in accelerator modeling require to work together
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We established a leadership role in our community

e push to organize: enhance cooperation, avoid duplication

e sustainable development: code ecosystem —HZDR = o
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Conclusion

e ECP enabled
o Complete rewrite of efficient code for CPUs+GPUs for focused area of research
o Ability to combine innovation in algorithms with very efficient implementation
o Collaboration WarpX+AMReX is the best that many of us have experienced

= great outcome: 500x FOM for Laser-Particle Acceleration; Gordon Bell Prize ‘22

e Sustainable development over nearly a decade
o across teams, labs and technologies: one “felt” as a part a community
o integrated teams of comput. phys. + applied math. + comput. sc. + software eng.

e Management Structure
o Focused main deliverables, flexibility to correct course, freedom to innovate
o Felt a good balance between oversight and overhead
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