
Managing Academic Software Development
Date: November 9, 2022
Presented by: Sam Mangham (University of Southampton)
(The slides are available at https://slides.com/sammangham/2022-11-09-hpc-bp.)

Q. Any guidance regarding how to change version numbers? For example, what does
version 1.0 usually mean?

A. A common strategy is (as mentioned in the comments) Semantic Versioning -
1.0.0 is your first stable build you share with users (e.g. the first time you use it in a
paper), then you increment the third digit when you patch a bug (e.g. 1.0.0 -> 1.0.1), the
second when you add a new feature that doesn’t break backwards compatibility (e.g.
1.0.1 -> 1.1.0), and finally the first digit when you *do* break backwards compatibility
(e.g. 1.1.0 -> 2.0.0). Academic software often also does a major release for each paper,
as changing algorithms etc. might not break backwards compatibility in a technical
sense, but it does mean that different versions will not give the same scientific results.

C. I think you can include the DOI since Zenodo lets you pre-allocate a DOI.
A. You can pre-allocate a DOI for an upload, but not for an automatic upload

for a linked GitHub repository (or couldn’t last I checked!)

C. For compiler, libs etc version: I think this is where EasyBuild is quite good as it
is really prescriptive. So quoting: the software was built with EasyBuild version 4.6.2,
using the supplied EasyConfig file Foo-foss-2021a.eb

C. Semantic versioning is one way to determine version #'s: https://semver.org

Q. Outside the US DOE, how popular is spack for managing compiler libraries, etc
dependencies? We have had success using spack for these issues but I am not sure
how widely adopted it is outside the DOE…

A. I don’t use Spack so I’m afraid I can’t comment! I normally use Docker or
Singularity for system-level dependency management, but I see there are
Spack/Singularity integrations.

C. I think Spack is more US based, EasyBuild more European based. Broadly
speaking. The 'downside' of Spack is its mix-and-match approach. Great for some
things, maybe not so great for others like simple reproducibility.

C. The Spack developer gives numerous talks at the SC conferences, which are
normally very well attended, and not many DOE system admins go to SC because of
the DOE travel restrictions

https://www.exascaleproject.org/event/managing-academic-software
https://slides.com/sammangham/2022-11-09-hpc-bp
https://semver.org


Q. I’ve seen a few researchers consult with softwarecarpentry.org. Can you comment on
that approach?

A. This was clarified in chat as being in reference to the training Software
Carpentries offer. I’d strongly recommend using Software Carpentry as an intro to
scientific programming - either attending a course with a qualified instructor, or
self-learning from the materials online. They cover the basics well, and there’s also a
range of specialist topics are available in the Lesson Incubator - including the
Intermediate lessons I’ve been involved in developing and delivering, that go into more
depth on things like design patterns, programming paradigms and continuous
integration!

Chat transcript (edited and anonymized, California times):

10:42:53 From participant-1 To Everyone:
This is a great talk. These are all ideas I have heard before but it is great to see them

all collected and spun with a focus on the unique needs of research software. Sorry I
have no questions, but the talk is great to hear.

10:44:46 From participant-2 To Everyone:
HA. Also I agree with participant-1 — I'm familiar with PEP8/Sphinx/pylint/etc, but it's

really handy to have everything pulled together into one place. An endorsement for
something like Flake8 from someone working in research software also goes a long
way.

https://carpentries.org/community-lessons/
https://carpentries-incubator.github.io/python-intermediate-development/

