
Investing in code reviews for better research
software

Thibault Lestang Dominik Krzemiński Valerio Maggio

Part 1
What is a code review?

Code review?
Main benefits:

(1) Catching bugs

(2) Ensuring quality standard

(3) Spreading knowledge

(4) Training new developers

Figure 1: __

From formal inspections to code review

Asynchronous Code Review

Synchronous Code Review

Elise Özalp, Yaxin, Defne Ozan, Daniel Kelshaw
(https://magrilab.ae.ic.ac.uk), Thibault Lestang. Photo cred: Neil
Montague.

Department of Aeronautics, Imperial College London

https://magrilab.ae.ic.ac.uk/group.html

Not a peer review for code

▶ Code review throughout the research process:
▶ Frequent
▶ Informal
▶ Low stakes

▶ Commonly referred as “Modern Code Review” in the SE
literature. Bachelli and Bird 2013

▶ Can be asynchronous (GitHub’s Pull Requests) or synchronous
(in person chat).

CODECHECK

Figure 2: codecheck.org.uk

Two contexts

1. Individual developers writing their own specific software.
2. Developers collaboration on a common codebase.

▶ Code review as gatekeeping.

Research on code reviews

Modern Code Review: A Case Study at Google (Sadowski, 2018)

Expectations, Outcomes, and Challenges of Modern Code Review
(Bacchelli and Bird, 2013)

Code Reviewing in the Trenches: Understanding Challenges and
Best Practices (McLeod et al, 2017)

Code review by and for scientists (Petre & Wilson, 2014)

Part 1

Benefits of code reviews for research software

Code review for software quality

1. Defects
2. Code improvements

Code review for software quality

Figure 3: (Bachelli & Bird, 13)

Code reviews for understandability

More often than not source code is the only available form of
documentation.

Understandability is key for code reuse and transparency.

Code reviews for team awareness

▶ Continuous knowledge exchange.
▶ Enhanced collaboration.
▶ Longer term resilience of project(s) (Bus factor!).

Code reviews for team awareness

Elise Özalp, Yaxin, Defne Ozan, Daniel Kelshaw
(https://magrilab.ae.ic.ac.uk), Thibault Lestang. Photo cred: Neil
Montague.

Department of Aeronautics, Imperial College London

https://magrilab.ae.ic.ac.uk/group.html

Code reviews for knowledge transfer

Code review is peer learning.

▶ Spread of good practices.
▶ Homogeneisation of styles and practices

filepath = "/my/own/specific/path/" + "data.csv"

from pathlib import Path
...
datadir_path = Path("/my/own/specific/path/")
filepath = datadir_path / "data.csv"

Code reviews for knowledge transfer

Code review is peer learning.

▶ Spread of good practices.
▶ Homogeneisation of styles and practices

filepath = "/my/own/specific/path/" + "data.csv"

from pathlib import Path
...
datadir_path = Path("/my/own/specific/path/")
filepath = datadir_path / "data.csv"

Code reviews for knowledge transfer

Code review is peer learning.

▶ Spread of good practices.
▶ Homogeneisation of styles and practices

filepath = "/my/own/specific/path/" + "data.csv"

from pathlib import Path
...
datadir_path = Path("/my/own/specific/path/")
filepath = datadir_path / "data.csv"

Part 2: Challenges

A lot of good practices around. . .

. . . but what about research software?

Code review is time and energy

Two complementary courses of actions:

▶ Regularly reflect process and follow good practices.

▶ Acknowledge code review as a worthy investment:

▶ “middle-term” benefits for individuals.
▶ Short and long term benefits for collectives.

Large return on investment

Code review is time and energy

Two complementary courses of actions:

▶ Regularly reflect process and follow good practices.
▶ Acknowledge code review as a worthy investment:

▶ “middle-term” benefits for individuals.
▶ Short and long term benefits for collectives.

Large return on investment

Code review is time and energy

Two complementary courses of actions:

▶ Regularly reflect process and follow good practices.
▶ Acknowledge code review as a worthy investment:

▶ “middle-term” benefits for individuals.

▶ Short and long term benefits for collectives.

Large return on investment

Code review is time and energy

Two complementary courses of actions:

▶ Regularly reflect process and follow good practices.
▶ Acknowledge code review as a worthy investment:

▶ “middle-term” benefits for individuals.
▶ Short and long term benefits for collectives.

Large return on investment

Code review is time and energy

Two complementary courses of actions:

▶ Regularly reflect process and follow good practices.
▶ Acknowledge code review as a worthy investment:

▶ “middle-term” benefits for individuals.
▶ Short and long term benefits for collectives.

Large return on investment

Code review is time and energy

Two complementary courses of actions:

▶ Regularly reflect process and follow good practices.
▶ Acknowledge code review as a worthy investment:

▶ “middle-term” benefits for individuals.
▶ Short and long term benefits for collectives.

Large return on investment

Being protective about code

1. There can be some unhealthy competition going on.
2. A large number of researchers feel shy about their coding

practices:

▶ Lack of training.
▶ Other priorities, often structural (e.g. funding).
▶ Why would I share my code if nobody else does?

Code review can put software (back?) at the heart of the
collaborative scientific process.

Being protective about code

1. There can be some unhealthy competition going on.
2. A large number of researchers feel shy about their coding

practices:

▶ Lack of training.
▶ Other priorities, often structural (e.g. funding).
▶ Why would I share my code if nobody else does?

Code review can put software (back?) at the heart of the
collaborative scientific process.

Strong heterogeneity among team members

▶ Experience.
▶ Skills (e.g. programming languages).
▶ Interest & motivation.

Other challenges

▶ Finding reviewers
▶ Finding guidance or mentors

Part 3: Code review good practices

A lot of the good practices from software engineering industry are
applicable, with a pinch of salt.

Keep it short

3 times 30’ instead of one time 90’

▶ Fit in a busy schedule.
▶ Doesn’t feel like a big commitment.
▶ Code review can be a very demanding activity.

Remember that software isn’t the primary driver.

Avoid comfort mode

That doesn’t look quite right but I guess that’s okay. . .

I just must have missed something

In code review meetings, authors should make is easy for reviewers
to interject.

The author’s part

Figure 4: A very scarce description

The author’s part

Figure 5: A very scarce description

The author’s part

▶ Keep it small! (~30’)
▶ Provide a description of the purpose and structure of the code.
▶ Think ahead what reviewers will and will not be familiar with

▶ Specific libraries?
▶ Specific domain knowledge?

▶ Ensure minimum quality standard (e.g. style, naming)

Put yourself into your reviewer(s)’ shoes: what would you want to
be told if asked to review your code?

Specify the feedback you are after

I’m not happy with this loop

for i in `seq 1 $NUMOFFIG`
do

FIG=$(ls $IMDIR | head -n $i | tail -n 1)
echo " ${placeholderpath}/${FIG}" >> $FILE

done

I’m having to define a lot of classes that don’t do much, what do
you think of my design?

I don’t have any specific issue in mind, but I’m curious to see
whether or not you find it hard to to follow the code’s logic.

Specify the feedback you are after

I’m not happy with this loop

for i in `seq 1 $NUMOFFIG`
do

FIG=$(ls $IMDIR | head -n $i | tail -n 1)
echo " ${placeholderpath}/${FIG}" >> $FILE

done

I’m having to define a lot of classes that don’t do much, what do
you think of my design?

I don’t have any specific issue in mind, but I’m curious to see
whether or not you find it hard to to follow the code’s logic.

Specify the feedback you are after

I’m not happy with this loop

for i in `seq 1 $NUMOFFIG`
do

FIG=$(ls $IMDIR | head -n $i | tail -n 1)
echo " ${placeholderpath}/${FIG}" >> $FILE

done

I’m having to define a lot of classes that don’t do much, what do
you think of my design?

I don’t have any specific issue in mind, but I’m curious to see
whether or not you find it hard to to follow the code’s logic.

Define (and enforce) a scope

Example default scope: understandability

▶ Obscure variable names.
▶ Complex conditionals.
▶ Duplicated code.
▶ Long parameter lists.
▶ Shallow modules.
▶ Standard compliance.
▶ Performance sinks.
▶ Security concerns.

Default scope can be overrriden at will.

Whether “it works” or not is irrelevant

▶ Code review is not an evaluation of a finished product.
▶ It is more rewarding to look at code that is WIP.
▶ The only expectation is that code is readable by reviewers.

Make it formal – but safe

Code review is more effective with a clear process (formal)

At the same time, Code review meetings must remain inclusives and
supporting spaces.

It’s about creating an environment where people feel
confident about discussing their code to each other.

Overheard in the next meeting room

Author: This loop I wrote looks too complicated to me.

Reviewer: Hmmm yes. You could just use a pipe and xargs.

Author: What’s xargs?

Reviewer: It’s basically mapping a command over a set of inputs -
think functional programming!

Author: . . .

Reviewer: Alhtough you could also do the same thing with sed.

Author (looking frustrated): I have no idea what you’re talking
about.

Overheard in the next meeting room

Author: This loop I wrote looks too complicated to me.

Reviewer: Hmmm yes. You could just use a pipe and xargs.

Author: What’s xargs?

Reviewer: It’s basically mapping a command over a set of inputs -
think functional programming!

Author: . . .

Reviewer: Alhtough you could also do the same thing with sed.

Author (looking frustrated): I have no idea what you’re talking
about.

Overheard in the next meeting room

Author: This loop I wrote looks too complicated to me.

Reviewer: Hmmm yes. You could just use a pipe and xargs.

Author: What’s xargs?

Reviewer: It’s basically mapping a command over a set of inputs -
think functional programming!

Author: . . .

Reviewer: Alhtough you could also do the same thing with sed.

Author (looking frustrated): I have no idea what you’re talking
about.

Overheard in the next meeting room

Author: This loop I wrote looks too complicated to me.

Reviewer: Hmmm yes. You could just use a pipe and xargs.

Author: What’s xargs?

Reviewer: It’s basically mapping a command over a set of inputs -
think functional programming!

Author: . . .

Reviewer: Alhtough you could also do the same thing with sed.

Author (looking frustrated): I have no idea what you’re talking
about.

Overheard in the next meeting room

Author: This loop I wrote looks too complicated to me.

Reviewer: Hmmm yes. You could just use a pipe and xargs.

Author: What’s xargs?

Reviewer: It’s basically mapping a command over a set of inputs -
think functional programming!

Author: . . .

Reviewer: Alhtough you could also do the same thing with sed.

Author (looking frustrated): I have no idea what you’re talking
about.

Overheard in the next meeting room

Author: This loop I wrote looks too complicated to me.

Reviewer: Hmmm yes. You could just use a pipe and xargs.

Author: What’s xargs?

Reviewer: It’s basically mapping a command over a set of inputs -
think functional programming!

Author: . . .

Reviewer: Alhtough you could also do the same thing with sed.

Author (looking frustrated): I have no idea what you’re talking
about.

Overheard in the next meeting room

Author: This loop I wrote looks too complicated to me.

Reviewer: Hmmm yes. You could just use a pipe and xargs.

Author: What’s xargs?

Reviewer: It’s basically mapping a command over a set of inputs -
think functional programming!

Author: . . .

Reviewer: Alhtough you could also do the same thing with sed.

Author (looking frustrated): I have no idea what you’re talking
about.

All feedback isn’t helpful

. . . at least for now.

Reviewers with more programming experience/enthusiasm must be
careful not to overwhelm beginners.

Use a checklist

□ Poor formatting.
□ Dead code.
□ Missing documentation.
□ Obscure names.
□ Complex conditionals.
□ Obscure one-liners.
□ Duplicated code.
□ Long procedures.
□ Long parameter lists.
□ Global state.
□ Abuse of primitive types.
□ Data clumps.
▶ . . .

Critique the code, not the programmer

You clearly made little effort in naming things. . .

You should name this differently

I think this name is misleading

Giving feedback is not trivial

1. Own you opinions.
2. Make it about the code.
3. Be specific.
4. Suggest an alternative.

I think this function’s purpose would be much clearer if it was given
a more explicit name.. perhaps apply_bwd_transform?

Giving feedback is not trivial

1. Own you opinions.
2. Make it about the code.
3. Be specific.
4. Suggest an alternative.

I think this function’s purpose would be much clearer if it was given
a more explicit name.. perhaps apply_bwd_transform?

Code review is both technical and social

Code reviews can drive both inclusion and exclusion.

A bad reviewer tries to force their preference on you. A
good code reviewer makes your code confrom to certain
principles, but not opinion. (Quote from survey participant
from Greiler, 2016)

Code review is both technical and social

Code reviews can drive both inclusion and exclusion.
A bad reviewer tries to force their preference on you. A
good code reviewer makes your code confrom to certain
principles, but not opinion. (Quote from survey participant
from Greiler, 2016)

Define (and refine) a policy

▶ Well defined process.
▶ Default scope.
▶ Moderator(s).
▶ Code of conduct.
▶ Conflict resolution.

A culture of openess and collaboration

▶ Components of a successful software project are
▶ Code
▶ People
▶ Communication

▶ Research code review goes along with collective ownersip of
research project.

