
Investing in Code Reviews for Better Research Software
Date: September 7, 2022
Presented by: Dominik Krzemiński (University of Cambridge), Thibault Lestang (Imperial
College London) and Valerio Maggio (Anaconda)
(The slides are available under “Materials from the Webinar” in the above link.)

Q. Do people have recommendations for / experience of code review practice when working in
small research groups with few technical peers? e.g. setting up groups that "cross borders"
between research teams? What are the challenges?

A. Partially covered in the slides:
https://tlestang.github.io/HPCBC-code-review-12102022/slides.html#/specify-the-feedback-you
-are-after/1
It works best when there is a mixture of people from various backgrounds, but the discussion is
monitored by more experienced software engineers.

Q. Quality is linked to economics. For commercial software, you want people to buy it. so you
work on documentation, ease of use and customer support and so on. For research software,
you often do not care if anybody else uses your code. you only care about publication. Users
outside of your research group are often of secondary importance. You may answer a few
questions here and there if you are nice. but you are too busy to provide customer support
when there is no reward. Given the economy of things, what are some extra factors that you
can inject into research software to boost accountability?

A. The economy aspect is important, but the only one. We believe that researchers should
change a mindset and notice the benefits they give without any external incentive. Some
example include:

- Better codebase after students/postdocs leaving the lab;
- Increased reproducibility.

Q. How do you break “the routine” and ask for such (live) code reviews in a team that is
already working? How do you make it look less like overhead and more like an opportunity?

A. The important aspect is engagement in the project. If a reviewer feels that the code review
is relevant (also for them) that definitely increases the focus.

Chat transcript (edited and anonymized, California times):

10:02:37 From participant-1 to Osni Marques(Direct Message):
I do agree that code review is critical for better software but what I discovered recently

working with two individuals, one with a PhD from a good university and working at a national
lab, publishing specific one time CUDA code, and another who graduated from a prestigious
Master’s program, also working at a national lab and now at a prestigious university, when I

https://www.exascaleproject.org/event/codereview
https://tlestang.github.io/HPCBC-code-review-12102022/slides.html#/specify-the-feedback-you-are-after/1
https://tlestang.github.io/HPCBC-code-review-12102022/slides.html#/specify-the-feedback-you-are-after/1

asked them to write "general” code that could work on many machines and environments they
were clueless. What I believe is also important in addition to code review is program design in
a general way so that it does not have to be rewritten over and over.

10:22:52 From participant-2 to Everyone:
quality is linked to economics. for commercial software, you want people to buy it. so you

work on documentation, ease of use and customer support and so on. for research software,
you often do not care if anybody else uses your code. you only care about publication. Users
outside of your research group are often of secondary importance. you may answer a few
questions here and there if you are nice. but you are too busy to provide customer support
when there is no reward. Given the economy of things, what are some extra factors that you
can inject into research software to boost accountability?

10:30:17 From participant-3 to Everyone:
@participant-2: I would argue that making your research software easier to use most

commonly will lead to collaborations with others, and potentially more publications.

10:32:31 From participant-2 to Everyone:
@participant-3. Yes, I agree. I have worked with researchers who are very willing to

collaborate with random people. but I think the motivation comes from wanting to promote
their codes--especially if you are part of a very influential big research group.

10:40:17 From participant-2 to Everyone:
I have seen quite a few times that researchers put a patch out there even more than they

compile it. the codes don't even compile and we have no way to do anything else. There are
many responsible researchers and some others are not as many. The community often does
not punish bad practices nor reward good practices. so things are the way they are
sometimes.

10:40:54 From participant-4 to Everyone:
Looking at a local public university, even for computer science majors, good software

practices such as code reviews, continuous integration, etc., are not taught. If it is not required
for CS majors to learn this, how can we possibly expect other disciplines that code to actually
use good software practices. Perhaps other universities actually teach this, but not here.

10:43:25 From participant-5 to Everyone:
@participant-4, I think what you are saying was true in the past, but in my experience

Universities are now starting to cover code review, continuous integration, etc.

10:47:11 From participant-4 to Everyone:
@participant-5. Good to know. Now if we can just get this required for other disciplines that

write code.

10:50:35 From participant-4 to Everyone:
Even a really great set of experienced software developers really struggle to agree on a

"nice" set of required software practices. Lots of incredibly great opinions does not necessarily
make it easier.

10:52:48 From participant-3 to Everyone:

@participant-4: In CSE courses I am involved in (TU Munich), we ask students to do code
reviews of others' codes, and we show a bit of CI. Every year, we add more and more of these
components.

10:57:51 From participant-5 to Everyone:
@participant-4 I have integrated git, containerization, and team based projects in all my

courses. As participant-3 said the complexity increase as the progress towards their senior
year

10:58:29 From participant-5 to Everyone:
Great talk! Thank you! Something else to consider is to apply the code review ideas to

other software artifacts. I know people don't tend to love documentation, but the quality of
documentation is very important. Reviews of documentation should be done (in my opinion)
with the same rigor as reviews of code. :-)
.
11:07:17 From Dominik Krzeminski to Everyone:

Very good point @participant-5, I agree 100%

