
effective strategies for writing
proposal work plans for

research software

Chase Million

1

some bonafides of the author

● 20 years of experience in research software support roles

● 12 years as CEO of a research software and consulting company

● PI of multiple software-heavy research grants

● Written and co-written many proposals. Reviewed hundreds of proposals

across multiple agencies

● Some major software projects include:
○ research software / support roles on Mars Exploration Rovers (Spirit and Opportunity), Mars

Science Laboratory (Curiosity), Mars 2020 (Perseverance)

○ lead software engineer of the Galaxy Evolution Explorer imaging pipeline.

○ the planetary data reader (pdr), a Python library to support read operations on ~2PB of legacy

observational data of the solar system from NASA missions

RSE Stories interview: https://us-rse.org/rse-stories/2022/chase-million/

2

thesis: work plans make or break proposals

● In my experience, review panels rarely get hung up on the question of "is this

worth doing?"

● Panels instead get hung up on the questions of "is this feasible?" and "will the

expense or effort plausibly lead to success?"

● Unfortunately, scientists typically receive no training in how to make (or judge)

useful, plausible work plans or estimates.

○ But they get a lot of training on how to describe the context and

importance of scientific questions or controversies…

○ so the "background" and "justification" sections end up dominating

proposals.

3

the whole secret to a compelling work plan

1. have a plan

2. describe it

4

steps to making a plan

1. scoping

2. requirements

3. estimation

4. scheduling

5

straightforward (but not easy!) scoping and estimation

● Play somewhat fast and loose with the formal project management standards.

● Use task decomposition as the basis for estimation.

● This approach is most appropriate for small-ish, novel projects (i.e. <5 people,

original research). There are better (and more difficult) estimation strategies for

other situations.

6

project scoping part one - vision & scope

● Figure out what you want to do.

● Identify the people who have the problem and / or who will be involved in

creating a solution.

● State the problem—as well as hard boundaries of possible solutions—in words

that all stakeholders agree to.

● Ideally ~2 sentences; no longer than 2 paragraphs.

● This is nearly equivalent to the "elevator pitch" for your proposal. If you cannot

convince the review panel that you are addressing a real problem / need within

<2 paragraphs, it is probably a poorly conceived project.

7

project scoping part two - concept of operations

● Interview intended "users" of the software.

● From the users' perspectives:

○ describe the current situation and critical features of the new system /

solution

○ describe the proposed system

○ make sure that all users agree that their needs are represented accurately

8

project scoping part three - requirements specification

● List: what set of conditions would achieve the project vision?

● Rank them by priority: critical, stretch, nice-to-have

● Cross out any requirement that is not critical — these are not requirements

● Requirements are what a system must do, not what it must be.

● The usefulness of your project estimate is absolutely limited by the

completeness of your requirements.

● The completeness of your requirements rests entirely on the accuracy of your

vision & scope / conops. An excellent requirements specification for the wrong

solution solving the wrong problem is worse than useless.

9

common categories of software requirements

● functionality
● accuracy and correctness
● reproducibility
● performance
● infrastructure
● deployment modes
● reliability
● maintainability
● usability
● interfaces
● ecosystem constraints
● quality attributes
● security

10

project estimation part one - work breakdown structure

● Think of a system or set of systems that addresses all requirements, aka "a

solution."

● Break the implementation into tasks and sub-tasks.

● Each unit action should be perceived as achievable.

● Not too many units: 10-20 for a mid-sized project

● Keep solutions open-ended when possible; put off making decisions.

● Verify completeness: if all tasks are completed, it will meet all requirements

● Check that commonly missed categories of tasks are represented (or justify

their absence).

11

commonly forgotten task categories

● exploring low-level implementation approaches and prototyping
● optimizing code
● documenting code; writing documentation, user guides, tutorials
● data organization or cleanup
● data and software archiving
● creating tests and test data
● other validation activities (e.g. comparing to published results)
● IT management
● software packaging and delivery
● disseminating results (e.g. talks, conferences, papers, etc.)
● project management, including periodic re-scoping and re-estimating
● communicating within the team (incl. informal and formal meetings / discussions)
● communicating outside the team (with end users, upper managers, sponsors)
● managing bug reports and feature requests

12

project estimation part two - estimation

● Judge the amount of time, in hours of billable effort, that it will take to complete

each task. If the people who will do the work are available, they should do this

for themselves.

● Assign a confidence factor of between 1.2 and 4 to each time estimate, based on

the prior experience of the people who do the work. A factor of 1.2 should be

used for tasks that are extremely similar to work that they have done before. A

4 is for work that is entirely new.

● The sum of outputs from (3) is the best case scenario for your project, the amount

of resources that would be required if everything went exactly to plan. The sum

of the pairwise products of (3) and (4) is the project estimate, or the resources

that are sufficient and reasonable to complete the work.
13

scale factors

1.2 : Deep domain expertise and prior experience doing very similar tasks. It is not

exactly 1 because everything will take longer than you expect.

2 : Deep domain expertise but do not have prior experience doing very similar

tasks. This is probably the most common scale factor in research projects.

3 : Some domain expertise, but have open questions about how to best approach

and successfully complete the task. Not as easy as two; but not as uncertain as four.

4 : Confident that the task is achievable, but almost no idea how.

Note: These apply to the person(s) who will be doing the work. How long it would take
someone else to do your work is irrelevant, unless you can get them to do it for you.

14

17

0. Is this a relatively small software project as part of a grant-funded research effort? If yes, proceed.

1. Define the project objectives clearly, in language that every stakeholder understands and agrees on. At

minimum, this should include a vision and scope document. It can optionally include concept of

operations and requirements specification documents.

2. Conceive of an approach that meets the requirements. Break it into sub-projects or tasks, each small

enough that you can conceive of completing it successfully.

3. Judge the amount of time, in hours of billable effort, that it will take for the people who do the work to

complete each task. If those people are available, they should do this for themselves.

4. Assign a confidence factor of between 1.2 and 4 to each time estimate, based on the prior experience

of the people who do the work. A factor of 1.2 should be used for tasks that are extremely similar to work

that they have done before. A 4 is for work that is entirely new to them.

5. The sum of outputs from (3) is the best case scenario for your project, the amount of resources that

would be required if everything went exactly to plan. The sum of the pairwise products of (3) and (4) is

the project estimate, or the resources that are sufficient and reasonable to complete the work.

the estimation algorithm

caveats re: estimation

● All estimates are wrong; the quality metric of an estimate is whether it is useful.

● An estimate is not the basis of a negotiation. Never alter the estimate to hit a

benchmark. Change the scope of work or high-level implementation and

re-estimate, or change the benchmark (e.g. get more resources).

● Re-estimate frequently once the project is underway. This will help you catch

many problems earlier.

18

putting it all into the proposal

● The tasks and subtasks of the WBS create natural section and subsection

headings; they can be consolidated for clarity.

● A few graphical artifacts—a task matrix and Gantt chart—will hammer home

that you have thought carefully about the work and what it entails.

● There are specific software tools for creating these charts, but you can also just

use any spreadsheet program.

19

It might make more sense, within the narrative of a proposal, to do a "science
traceability matrix" (STM), tying scientific objects to tasks or requirements

See description of STMs by Sabrina Feldman at the NASA PI Launchpad Workshop (Nov. 9, 2019):
https://science.nasa.gov/science-pink/s3fs-public/atoms/files/Launchpad_Session3_STM_18Nov2019_smf_final.pdf
and Jared Leisner at the NASA PI Launchpad Workshop (June 15, 2021):
https://science.nasa.gov/science-pink/s3fs-public/atoms/files/PI%20Launchpad--STM--JLeisner%20210615.pdf

requirements traceability matrix (RTM)

20

task matrices
Tie your project objectives / requirements directly to specific tasks.

gantt charts

● Show distribution of work effort across task and time

● Gantt charts primarily work off calendar time, not billable time; the conversion

between the two requires careful consideration.

● Gantt charts can also include information about personnel or task ownership.

21

22

example gantt chart — hypothetical project

example gantt chart — real project

23

example gantt chart

Note that:

● Total work effort matches the estimate.

● Work effort is distributed somewhat

evenly across time. No big spikes.

● Some tasks are fixed in time (like

conferences).

● Some tasks are fixed in sequence, e.g.

they are in the paths of other tasks.

general proposal tips and strategies

● The work plan should compose at least 30% of the page allotment.

● Reviewers will be exhausted and looking for cognitive shortcuts. They will

probably not parse prose carefully or accurately. Give them clear tables and

charts to hang onto.

● For any tables and charts or graphics of any kind, make sure that the font is

approximately the same size as the body font of the proposal if not larger.

● Verify that there is consistent terminology between the graphics and body text.

● Use consistent organizational structure for the work plan and body text; major

project tasks should have names that are echoed (and maybe bolded /

underlined or used as section headings) in the body text.

25

general proposal tips and strategies

● Every proposal should have a gantt chart. It's worth taking a whole page for it.

● Make sure that all tasks are assigned to at least one team member and that all

budgeted team members are assigned to tasks.

● You must assume that reviewers do not have even a general understanding of

project management ideas, let alone this specific approach. Therefore, include

1-2 paragraphs explaining the method used to generate the work plan and

estimates.

26

recommended reading – project planning / estimation

● "Software Estimation: Demystifying the Black Art" by S. McConnell

● "Software Estimation Without Guessing: Effective Planning in an Imperfect

World" by G. Dinwiddle

● IEEE Std. 830-1998 "IEEE Recommended Practice for Software Requirements

Specifications"

● "a practical guide to research software project estimation" by C. Million

● "Strategies for research software project estimation" by C. Million

27

https://github.com/MillionConcepts/software_project_management

 https://www.youtube.com/watch?v=Ks0zOa4Z5bM

recommended reading – proposal preparation

● "Science in Action: How to Follow Scientist and Engineers Through Society" by

B. Latour

● "Visual Explanations" (and everything else) by E. Tufte

● "Thinking Fast and Slow" by D. Kahneman

● "Influence: The Psychology of Persuasion" by R. Cialdini

● "The Missing README: a guide for the new software engineer." by C. Riccomini

and D. Ryaboy

28

This research was supported by the Better Scientific Software
Fellowship, part of the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of

Science and the National Nuclear Security Administration.

29

Chase Million
Million Concepts
chase@millionconcepts.com
github.com/millionconcepts

